Artificial Intelligence-Scaffolded Pre-Classroom Learning for Large, Introductory Undergraduate Physics Courses

人工智能——大型本科物理入门课程的支架式课前学习

基本信息

项目摘要

This project aims to serve the national interest by designing and implementing an Artificial Intelligence (AI)-augmented formative assessment and feedback system. This system will help students develop source-based STEM arguments, such as STEM text summarization, or problem spaces, which are mental representations of a problem and of multiple paths to solving it. Project implementation will take place in large, undergraduate introductory physics courses at an urban university that serves diverse and historically underrepresented student groups. Persistent learner engagement in pre-classroom learning activities is critical to learner success in introductory STEM courses. Undergraduate students often need to develop a solid understanding of content or problem situations in self-paced online learning contexts to prepare for in-classroom active and collaborative learning. However, unsupervised pre-classroom learning can be an ongoing issue in a student-centered learning model. This problematic situation is particularly evident in large introductory-level STEM courses where traditional instructional techniques are less effective. The innovation of this project will include AI-generated adaptive scaffolding information and learning progress feedback with data visualization techniques to help students with conceptual learning and self-regulatory behaviors. The unique learning opportunities supported by an AI-scaffolded feedback system will significantly increase students' engagement levels in self-paced online pre-classroom learning. This, in turn, should help students acquire content knowledge and build a proper understanding of problems to prepare themselves for success with in-classroom interactive problem-solving activities.Three phases will govern the work of this project. First, the project team will take a Participatory Research (PR) approach that emphasizes the direct engagement of faculty members who teach physics courses in designing and implementing new assignments. These faculty members will also co-construct research through a partnership with researchers to conduct a mixed-methods study of instructors and students in the courses. During this first phase the primary research goal is to identify topics and problems that utilize AI-scaffolded pre-classroom learning and investigate learner engagement and progression in the pre-class assignments. In the project's second phase evaluation studies will demonstrate whether knowledge development during pre-classroom learning can help students solve cognitively demanding tasks in classrooms and develop positive self-efficacy in STEM. The findings will also determine whether AI in education improves students' well-being inside and outside of classrooms, with a focus on students traditionally underrepresented in STEM education. Extensive data collected in the final phase will uncover the relationships among pre-classroom activities, in-classroom performance, self-efficacy, interest in physics, and student backgrounds, including gender, race, ethnicity, first-generation status, and English language learning. The sequence mining and cluster analysis are expected to reveal students' different hidden engagement states and group their engagement trajectories, explaining how cluster membership and trajectories vary across students' backgrounds. Consequently, this project will lay the groundwork for further research to develop an AI-scaffolded pre-classroom learning model that promotes most students' success in introductory physics courses. The NSF IUSE: EDU Program supports research and development projects to improve the effectiveness of STEM education for all students. Through its Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过设计和实施人工智能(AI)增强的形成性评估和反馈系统来服务于国家利益。该系统将帮助学生开发基于源代码的STEM论证,如STEM文本摘要或问题空间,它们是问题的心理表征和解决问题的多种途径。项目实施将在一所城市大学的大型本科物理入门课程中进行,该大学为多样化和历史上代表性不足的学生群体提供服务。持续的学习者参与课堂前的学习活动是学习者在入门STEM课程中取得成功的关键。本科生通常需要在自定进度的在线学习环境中对内容或问题情况有深入的了解,以便为课堂上的主动和协作学习做好准备。然而,在以学生为中心的学习模式中,无监督的课堂前学习可能是一个持续的问题。这种问题在大型入门级STEM课程中尤为明显,传统的教学技术效果较差。该项目的创新将包括人工智能生成的自适应脚手架信息和学习进度反馈,以及数据可视化技术,以帮助学生进行概念学习和自我调节行为。由人工智能支架反馈系统支持的独特学习机会将显着提高学生在自定进度的在线课堂前学习中的参与度。这反过来又会帮助学生获得知识和建立对问题的正确理解,为成功地进行课堂互动解决问题活动做好准备。首先,项目团队将采取一种渐进式研究(PR)方法,强调教授物理课程的教师直接参与设计和实施新任务。这些教师还将通过与研究人员的伙伴关系共同构建研究,以在课程中对教师和学生进行混合方法研究。在第一阶段,主要研究目标是确定利用人工智能支架的课前学习的主题和问题,并调查学习者在课前作业中的参与和进展。在该项目的第二阶段,评估研究将证明在课堂前学习期间的知识发展是否可以帮助学生解决课堂上要求认知的任务,并在STEM中培养积极的自我效能。调查结果还将确定教育中的人工智能是否能改善学生在课堂内外的福祉,重点关注传统上在STEM教育中代表性不足的学生。在最后阶段收集的大量数据将揭示课前活动,课堂表现,自我效能感,对物理的兴趣和学生背景之间的关系,包括性别,种族,民族,第一代身份和英语学习。序列挖掘和聚类分析有望揭示学生不同的隐藏参与状态,并将他们的参与轨迹分组,解释聚类成员和轨迹如何在学生的背景中变化。因此,该项目将为进一步研究开发一种人工智能支架式的课堂前学习模型奠定基础,该模型将促进大多数学生在入门物理课程中取得成功。NSF IUSE:EDU计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Kyu Kim其他文献

Production of transgenic spermatozoa by lentiviral transduction and transplantation of porcine spermatogonial stem cells
慢病毒转导和猪精原干细胞移植产生转基因精子
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Byung;Yong;Yong;Bang;Ki;Sang;Hak;Seongsoo Hwang;S. Choi;M. Kim;Dong‐Hoon Kim;In;Min Kyu Kim;Nam;C. Kim;Buom
  • 通讯作者:
    Buom
Effect of beta-mercaptoethanol or epidermal growth factor supplementation on in vitro maturation of canine oocytes collected from dogs with different stages of the estrus cycle.
β-巯基乙醇或表皮生长因子补充剂对从发情周期不同阶段的狗收集的犬卵母细胞体外成熟的影响。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Kyu Kim;Y. H. Fibrianto;H. Oh;G. Jang;Hye Jin Kim;Kyu Seung Lee;S. Kang;Byeong;W. Hwang
  • 通讯作者:
    W. Hwang
Embedded surfaces for symplectic circle actions
用于辛圆动作的嵌入曲面
  • DOI:
    10.1007/s11401-017-1031-7
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunhyung Cho;Min Kyu Kim;D. Suh
  • 通讯作者:
    D. Suh
Effects of subcutaneous drain on wound dehiscence and infection in gynecological midline laparotomy: Secondary analysis of a Korean Gynecologic Oncology Group study (KGOG 4001)
皮下引流对妇科中线剖腹手术伤口裂开和感染的影响:韩国妇科肿瘤小组研究 (KGOG 4001) 的二次分析

Min Kyu Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
  • 批准号:
    10082602
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了