EFRI BRAID: Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding

EFRI BRAID:通过时间支架有效学习人类和机器的时空规律

基本信息

  • 批准号:
    2317706
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Operating on a minimal energy budget, the human brain is able to efficiently process vast amounts of temporal information at different timescales as it quickly learns to act in new environments. By contrast, current AI models do not learn temporal information efficiently, struggle with lifelong learning - the ability to keep learning new tasks continuously throughout life - and also do not perform well in resource-constrained environments. This project aims to create new AI models that overcome these limitations by leveraging mechanisms inspired by theories for how the brain is able to efficiently learn temporal information. Particularly, the project is based on a recent theory, 'temporal scaffolding', which postulates that during sleep, the brain reactivates wake experiences in an accelerated manner to allow detecting important temporal patterns embedded in those experiences. The goal of this project is to develop autonomous machines, informed by the temporal scaffolding hypothesis, which can rapidly adapt, operate under uncertainty, and evolve throughout their lifespan despite resource constraints. This transformative approach has the potential to address major AI challenges and find applications in healthcare, energy, and national security. The team aims to promote broad access to the computational strategies through initiatives at multiple educational institutions, emphasizing cross-disciplinary training and outreach to underrepresented populations. The team will conduct value-sensitive workshops and regular ethics consultations throughout the project. Alongside the technical goals, the team aims to offer opportunities for underrepresented students in AI fields, fostering a competitive AI workforce to maintain US technological leadership in STEM. By emulating how the human brain learns, the team seeks to create efficient, lifelong learning AI systems capable of revolutionizing various industries and benefiting society as a whole.The Temporal Scaffolding Hypothesis provides a novel explanation for the brain’s superior ability to efficiently learn temporal information. According to this hypothesis, time-compressed memory replay during offline periods serves to extract temporal regularities within encoded experiences. Building on the temporal scaffolding hypothesis, in the present project the PIs propose a set of mechanisms underlying resource-efficient lifelong learning of spatiotemporal regularities employing online (“wake”) and offline (“sleep”) periods, which they intend to both verify in new human experiments and incorporate in machine learning algorithms. Advances in theory, models, and systems stemming from this grant will have applications in multiple domains. The two specific aims for this project are to: i) develop new AI algorithms and architectures, inspired by the temporal scaffolding hypothesis, for efficient learning of spatiotemporal patterns and ii) extend the temporal scaffolding hypothesis to include hierarchical representations that support lifelong learning and verify the predictions of the model through human experiments and computational investigations. Through these aims the PIs will develop optimization frameworks that support deployment in resource constrained environments. Moreover, this project will yield scalable deep neural network and spiking neural network models that incorporate temporally compressed replay mechanisms. This approach is expected to limit the catastrophic interference effects that hinder most current network models of memory and improve the system’s capacity for lifelong learning. Training and access to these transformative computational strategies will be broadened via multiple initiatives at the University of Texas at San Antonio, the University of Rochester, and the University of Tennessee, Knoxville, including successful K-12 partnerships and targeted experiential outreach strategies. The team will also engage in ethical design through value-sensitive workshops and regular ethics consultations. The project design efforts will also provide significant opportunities to underrepresented students in cross-cutting AI fields and promote a robust and competitive AI workforce that maintains US technological leadership in STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在最小的能量预算下运行,人脑能够在不同的时间尺度上高效地处理大量的时间信息,因为它很快就学会了在新的环境中行动。相比之下,目前的人工智能模型不能有效地学习时间信息,难以实现终身学习--即在一生中不断学习新任务的能力--而且在资源有限的环境中也表现不佳。该项目旨在创建新的人工智能模型,通过利用大脑如何能够有效学习时间信息的理论启发的机制来克服这些限制。特别是,该项目是基于最近的一项名为“时间脚手架”的理论,该理论假设,在睡眠期间,大脑会以一种加速的方式重新激活醒来的经历,从而能够检测出嵌入这些经历的重要的时间模式。这个项目的目标是开发基于时间脚手架假设的自主机器,它可以快速适应,在不确定的情况下操作,并在资源受限的情况下在整个生命周期内进化。这种变革性的方法有可能应对主要的人工智能挑战,并在医疗保健、能源和国家安全方面找到应用。该小组的目标是通过在多个教育机构采取举措,促进更广泛地利用计算战略,强调跨学科培训和面向代表性不足的人群。该小组将在整个项目期间举办对价值敏感的讲习班和定期道德操守协商。除了技术目标,该团队的目标是为人工智能领域代表性不足的学生提供机会,培养一支具有竞争力的人工智能劳动力,以保持美国在STEM的技术领先地位。通过模仿人脑的学习方式,该团队试图创建高效的、终身学习的人工智能系统,该系统能够彻底改变各个行业,并造福于整个社会。时间脚手架假说为大脑高效学习时间信息的优越能力提供了一种新的解释。根据这一假设,离线期间的时间压缩记忆重放用于提取编码经验中的时间规律性。在时间脚手架假说的基础上,在本项目中,PI提出了一套基于资源高效的终身学习时空规则的机制,使用在线(“觉醒”)和离线(“睡眠”)时间段,他们打算在新的人类实验中验证这些机制,并将其纳入机器学习算法。这笔赠款在理论、模型和系统方面的进步将在多个领域得到应用。该项目的两个具体目标是:i)在时间支架假设的启发下,开发新的人工智能算法和体系结构,用于时空模式的有效学习;ii)扩展时间支架假设,包括支持终身学习的层次表示,并通过人体实验和计算研究验证模型的预测。通过这些目标,PI将开发支持在资源受限环境中部署的优化框架。此外,该项目将产生可扩展的深度神经网络和尖峰神经网络模型,其中包含时间压缩重放机制。这种方法预计将限制阻碍大多数当前记忆网络模型的灾难性干扰效应,并提高系统的终身学习能力。通过德克萨斯大学圣安东尼奥分校、罗切斯特大学和诺克斯维尔田纳西大学的多项倡议,包括成功的K-12合作伙伴关系和有针对性的体验式推广战略,将扩大培训和获得这些变革性计算战略的机会。该小组还将通过对价值有敏感认识的讲习班和定期道德操守协商,参与道德操守设计。项目设计工作还将为交叉人工智能领域中代表性不足的学生提供重要机会,并促进一支强大而有竞争力的人工智能劳动力队伍,以保持美国在STEM的技术领先地位。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dhireesha Kudithipudi其他文献

The neurobench framework for benchmarking neuromorphic computing algorithms and systems
用于神经形态计算算法和系统基准测试的神经基准框架
  • DOI:
    10.1038/s41467-025-56739-4
  • 发表时间:
    2025-02-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jason Yik;Korneel Van den Berghe;Douwe den Blanken;Younes Bouhadjar;Maxime Fabre;Paul Hueber;Weijie Ke;Mina A. Khoei;Denis Kleyko;Noah Pacik-Nelson;Alessandro Pierro;Philipp Stratmann;Pao-Sheng Vincent Sun;Guangzhi Tang;Shenqi Wang;Biyan Zhou;Soikat Hasan Ahmed;George Vathakkattil Joseph;Benedetto Leto;Aurora Micheli;Anurag Kumar Mishra;Gregor Lenz;Tao Sun;Zergham Ahmed;Mahmoud Akl;Brian Anderson;Andreas G. Andreou;Chiara Bartolozzi;Arindam Basu;Petrut Bogdan;Sander Bohte;Sonia Buckley;Gert Cauwenberghs;Elisabetta Chicca;Federico Corradi;Guido de Croon;Andreea Danielescu;Anurag Daram;Mike Davies;Yigit Demirag;Jason Eshraghian;Tobias Fischer;Jeremy Forest;Vittorio Fra;Steve Furber;P. Michael Furlong;William Gilpin;Aditya Gilra;Hector A. Gonzalez;Giacomo Indiveri;Siddharth Joshi;Vedant Karia;Lyes Khacef;James C. Knight;Laura Kriener;Rajkumar Kubendran;Dhireesha Kudithipudi;Shih-Chii Liu;Yao-Hong Liu;Haoyuan Ma;Rajit Manohar;Josep Maria Margarit-Taulé;Christian Mayr;Konstantinos Michmizos;Dylan R. Muir;Emre Neftci;Thomas Nowotny;Fabrizio Ottati;Ayca Ozcelikkale;Priyadarshini Panda;Jongkil Park;Melika Payvand;Christian Pehle;Mihai A. Petrovici;Christoph Posch;Alpha Renner;Yulia Sandamirskaya;Clemens J. S. Schaefer;André van Schaik;Johannes Schemmel;Samuel Schmidgall;Catherine Schuman;Jae-sun Seo;Sadique Sheik;Sumit Bam Shrestha;Manolis Sifalakis;Amos Sironi;Kenneth Stewart;Matthew Stewart;Terrence C. Stewart;Jonathan Timcheck;Nergis Tömen;Gianvito Urgese;Marian Verhelst;Craig M. Vineyard;Bernhard Vogginger;Amirreza Yousefzadeh;Fatima Tuz Zohora;Charlotte Frenkel;Vijay Janapa Reddi
  • 通讯作者:
    Vijay Janapa Reddi
Biological underpinnings for lifelong learning machines
终身学习机器的生物学基础
  • DOI:
    10.1038/s42256-022-00452-0
  • 发表时间:
    2022-03-23
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Dhireesha Kudithipudi;Mario Aguilar-Simon;Jonathan Babb;Maxim Bazhenov;Douglas Blackiston;Josh Bongard;Andrew P. Brna;Suraj Chakravarthi Raja;Nick Cheney;Jeff Clune;Anurag Daram;Stefano Fusi;Peter Helfer;Leslie Kay;Nicholas Ketz;Zsolt Kira;Soheil Kolouri;Jeffrey L. Krichmar;Sam Kriegman;Michael Levin;Sandeep Madireddy;Santosh Manicka;Ali Marjaninejad;Bruce McNaughton;Risto Miikkulainen;Zaneta Navratilova;Tej Pandit;Alice Parker;Praveen K. Pilly;Sebastian Risi;Terrence J. Sejnowski;Andrea Soltoggio;Nicholas Soures;Andreas S. Tolias;Darío Urbina-Meléndez;Francisco J. Valero-Cuevas;Gido M. van de Ven;Joshua T. Vogelstein;Felix Wang;Ron Weiss;Angel Yanguas-Gil;Xinyun Zou;Hava Siegelmann
  • 通讯作者:
    Hava Siegelmann
Neuromorphic computing at scale
大规模神经形态计算
  • DOI:
    10.1038/s41586-024-08253-8
  • 发表时间:
    2025-01-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Dhireesha Kudithipudi;Catherine Schuman;Craig M. Vineyard;Tej Pandit;Cory Merkel;Rajkumar Kubendran;James B. Aimone;Garrick Orchard;Christian Mayr;Ryad Benosman;Joe Hays;Cliff Young;Chiara Bartolozzi;Amitava Majumdar;Suma George Cardwell;Melika Payvand;Sonia Buckley;Shruti Kulkarni;Hector A. Gonzalez;Gert Cauwenberghs;Chetan Singh Thakur;Anand Subramoney;Steve Furber
  • 通讯作者:
    Steve Furber
Probabilistic metaplasticity for continual learning with memristors in spiking networks
  • DOI:
    10.1038/s41598-024-78290-w
  • 发表时间:
    2024-11-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Fatima Tuz Zohora;Vedant Karia;Nicholas Soures;Dhireesha Kudithipudi
  • 通讯作者:
    Dhireesha Kudithipudi

Dhireesha Kudithipudi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dhireesha Kudithipudi', 18)}}的其他基金

PARTNER: Neuro-Inspired AI for the Edge at UTSA (NAIAD)
合作伙伴: UTSA (NAIAD) 的神经启发人工智能边缘
  • 批准号:
    2332744
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
Conference: NSF International Workshop on Large Scale Neuromorphic Computing
会议:NSF 大规模神经形态计算国际研讨会
  • 批准号:
    2231027
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
  • 批准号:
    498289
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Operating Grants
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
  • 批准号:
    2318065
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Combinatorics and Braid Varieties
组合学和编织品种
  • 批准号:
    2246877
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction
EFRI BRAID:模拟小脑时间相干信号以实现超高效紧急预测
  • 批准号:
    2317974
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs
EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航
  • 批准号:
    2318081
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
  • 批准号:
    2318101
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Scalable-Learning Neuromorphics
EFRI BRAID:可扩展学习神经形态
  • 批准号:
    2318152
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Braid groups via representation theory and machine learning
通过表示理论和机器学习编织辫子群
  • 批准号:
    DP230100654
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了