Combinatorics and Braid Varieties
组合学和编织品种
基本信息
- 批准号:2246877
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic combinatorics is a branch of mathematics that studies algebraic structures using combinatorial methods, and combinatorial structures using algebraic methods. Such structures and methods are often fundamental to many different scientific disciplines and show up in many different contexts---algebraic combinatorics therefore has diverse applications to subjects like cryptography, protein folding, high-energy physics, and quantum computing. This project will use algebraic objects and methods to produce new combinatorial results, leveraging braid varieties--a sort of algebraic space associated to a knot--as a unifying tool. Funds will additionally support training graduate students and outreach efforts, including work on an interactive online discrete mathematics textbook.In more detail, this proposal suggests a framework for producing combinatorial results using braid varieties over finite fields, Hecke algebra traces, rational Cherednik algebras, and a new relationship with noncrossing combinatorics. The framework has already proven successful in producing substantial new results: the PI's recent joint work with Galashin, Lam, and Trinh resolved two decades-long open problems in Coxeter-Catalan combinatorics, simultaneously producing the first definition of rational noncrossing Coxeter-Catalan objects, while also giving the first uniform enumeration of noncrossing objects. Connections to Macdonald theory--diagonal harmonics and q,t-combinatorics--are also expected when working over the complex numbers. At different levels of generality, different techniques become available. For finite Coxeter groups, it is possible to compute everything in a case-by-case manner using an explicit decomposition of the Hecke algebra, and there are many interesting combinatorial and representation-theoretic problems open for immediate attack. Special classes of elements in finite type have favorable representation-theoretic properties that allow for uniform approaches. For affine Weyl groups, the main tool is a trace formula for translations, due to Opdam. For example, the proposed framework recovers some Tessler matrix identities due to Haglund in this setting. For general Kac-Moody Weyl groups, we are reduced to general recursive and cluster-theoretic methods. These methods also apply in both the finite and affine cases, but will require software implementation before further exploration is possible.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数组合学是数学的一个分支,它用组合方法研究代数结构,用代数方法研究组合结构。这种结构和方法通常是许多不同科学学科的基础,并在许多不同的背景下出现-代数组合学因此在密码学、蛋白质折叠、高能物理和量子计算等学科中有不同的应用。这个项目将使用代数对象和方法来产生新的组合结果,利用辫子簇--一种与纽结相关的代数空间--作为统一工具。此外,基金还将支持研究生的培训和推广工作,包括交互式在线离散数学教科书的工作。更详细地,这项建议提出了一个框架,用于产生组合结果,使用有限域上的辫子簇、Hecke代数迹、有理Cherednik代数,以及与非交叉组合数学的新关系。该框架已经被证明在产生实质性的新结果方面是成功的:PI最近与Galashin、Lam和Trin的合作解决了Coxeter-Catalan组合学中长达20年的公开问题,同时给出了有理非交叉Coxeter-Catalan对象的第一个定义,同时也给出了第一个非交叉对象的统一枚举。与麦克唐纳理论的联系--对角调和和q,t-组合学--在处理复数时也是可以预料到的。在不同的一般性级别上,可以使用不同的技术。对于有限Coxeter群,可以使用Hecke代数的显式分解以逐个情况的方式计算一切,并且有许多有趣的组合和表示论问题可以立即攻击。有限类型的特殊元素类具有良好的表示理论性质,允许采用统一的方法。对于仿射Weyl群,主要的工具是一个用于平移的迹公式,这是由于Opdam。例如,在这种情况下,所提出的框架恢复了由于Haglund的一些Tessler矩阵恒等式。对于一般的Kac-Moody Weyl群,我们归结为一般的递归方法和簇论方法。这些方法也适用于有限和仿射情况,但在可能进行进一步探索之前,需要软件实现。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Williams其他文献
Rowmotion in slow motion
慢动作划行
- DOI:
10.1112/plms.12251 - 发表时间:
2017 - 期刊:
- 影响因子:1.8
- 作者:
Hugh Thomas;Nathan Williams - 通讯作者:
Nathan Williams
An Urban School Principal Encounters a Group of Teachers Who Seek to Address Racism in Their School
一位城市学校校长遇到一群寻求解决学校种族主义问题的教师
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
J. Scheurich;Nathan Williams - 通讯作者:
Nathan Williams
The sounds of a helicopter on Mars
- DOI:
10.1016/j.pss.2023.105684 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Ralph D. Lorenz;Sylvestre Maurice;Baptiste Chide;David Mimoun;Alexander Stott;Naomi Murdoch;Martin Giller;Xavier Jacob;Roger C. Wiens;Franck Montmessin;Håvard Grip;Theodore Tzanetos;Bob Balaram;Nathan Williams;Matt Keennon;Sara Langberg;Jeremy Tyler;Tanguy Bertrand;Adrian Brown;Nicolas Randazzo - 通讯作者:
Nicolas Randazzo
Cyclic symmetry of the scaled simplex
缩放单纯形的循环对称性
- DOI:
10.1007/s10801-013-0446-9 - 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Hugh Thomas;Nathan Williams - 通讯作者:
Nathan Williams
Two sides of a coin: Assessing trade-offs between reliability and profit in mini grids and the policy implications for subsidies
- DOI:
10.1016/j.apenergy.2024.124726 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Lefu Maqelepo;Fhazhil Wamalwa;Nathan Williams;Jay Taneja - 通讯作者:
Jay Taneja
Nathan Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Williams', 18)}}的其他基金
Conference: Formal Power Series and Algebraic Combinatorics 2023 and 2024
会议:形式幂级数和代数组合 2023 和 2024
- 批准号:
2308509 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Graduate Student Combinatorics Conference 2018
2018年研究生组合学会议
- 批准号:
1801331 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Operating Grants
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
- 批准号:
2318065 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EFRI BRAID: Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding
EFRI BRAID:通过时间支架有效学习人类和机器的时空规律
- 批准号:
2317706 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
- 批准号:
2318139 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EFRI BRAID: Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction
EFRI BRAID:模拟小脑时间相干信号以实现超高效紧急预测
- 批准号:
2317974 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs
EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航
- 批准号:
2318081 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
- 批准号:
2318101 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EFRI BRAID: Scalable-Learning Neuromorphics
EFRI BRAID:可扩展学习神经形态
- 批准号:
2318152 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Braid groups via representation theory and machine learning
通过表示理论和机器学习编织辫子群
- 批准号:
DP230100654 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Discovery Projects














{{item.name}}会员




