GCR: Rational Design of Topological Insulators using Atomically-Precise DNA Self-Assembly
GCR:利用原子精确的 DNA 自组装技术合理设计拓扑绝缘体
基本信息
- 批准号:2317843
- 负责人:
- 金额:$ 359.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2028-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In many ways the history of humanity is the history of materials; from the Bronze and Iron Ages to the modern Silicon Age, humans have taken advantage of the properties of the materials around them to foster the advancement of civilization. From this viewpoint, the pinnacle of improvement would be to design materials with desired properties a priori. The vision of this convergent project is to address this grand challenge. This project aims to take advantage of the unique characteristics of DNA self-assembly, along with its chemical and structural properties to create synthetic materials with precisely-controllable electronic and magnetic properties with the ultimate goal of developing magnetic Topological Insulators (TIs). The introduction of robust magnetism into TIs will allow unique quantum phenomena to be realized in the solid state that could be exploited for applications including quantum computing, electronics, spintronics, optoelectronics, and renewable energy. Accomplishing this vision will require a convergence between chemistry, biology, materials science, engineering, nanotechnology, computational modeling, and condensed matter physics. To achieve convergence, this project brings together a diverse team of experts spanning these disciplines that will work collaboratively to co-design and co-develop these systems. Developing the ability to precisely control the electronic band structure and magnetic properties of materials will have broad impacts across society in the coming decades. In addition, this project includes a framework for nucleating a new scientific community focused on utilizing the unique spatial and topological properties of soft matter to create topological insulators with precisely tailored electronic and magnetic properties. This community will represent a convergence of thoughts, language, and ideals from a broad spectrum of the science and engineering community. This project aims to develop a framework that enables precision topological control over the electronic and magnetic properties of materials. Achieving this vision requires a convergence between complementary disciplines to ultimately fuse the realms of soft matter, real-space topology with momentum-space (k-space) topology. Specifically, the aim is to utilize the unique programmability and unparalleled spatial, structural, and self-assembly capabilities afforded by DNA nanotechnology to precisely tailor the topology of metal ions to ultimately create magnetic topological insulators through iterative, rational design. The introduction of magnetism into topological insulators is currently a major unresolved challenge in the condensed matter physics community; and real-space, DNA-based topological control provides a unique path toward solving this challenge. The development of atomically precise, metalated DNA motifs will allow control over electronic properties, and the design of purpose-specific, self-assembled band structure. To achieve this goal, this project will focus on: i) advancing chemical design and synthesis of metalated base pairs at the atomic and molecular levels; ii) developing approaches for the structural and topological design of DNA assemblies at the supramolecular scale; iii) extracting and quantifying the electronic properties of small-scale DNA-based assemblies; iv) modeling the electronic structure and transport properties of hybrid bio/condensed matter at the molecular levels; v) developing a design language for understanding how to map the unique spatial topological control afforded by DNA nanotechnology into the desired momentum-space topological control of electrons in topological insulators. Through these steps, this project will design and implement initial proof-of-principle TI designs and plant the seeds of a new community that will sustain this nascent field in the decades to come.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多方面,人类的历史就是材料的历史;从青铜时代和铁器时代到现代硅时代,人类利用了周围材料的特性来促进文明的进步。从这个角度来看,改进的顶峰将是设计具有先验所需特性的材料。这个融合项目的愿景是应对这一重大挑战。该项目旨在利用DNA自组装的独特特性,沿着其化学和结构特性,创造具有精确可控的电子和磁性的合成材料,最终目标是开发磁性拓扑绝缘体(TI)。在TI中引入强大的磁性将允许在固态中实现独特的量子现象,可以用于包括量子计算,电子学,自旋电子学,光电子学和可再生能源在内的应用。实现这一愿景将需要化学,生物学,材料科学,工程,纳米技术,计算建模和凝聚态物理学之间的融合。为了实现融合,该项目汇集了跨越这些学科的多元化专家团队,他们将协同工作,共同设计和共同开发这些系统。发展精确控制材料电子能带结构和磁性的能力将在未来几十年对社会产生广泛影响。此外,该项目还包括一个新的科学社区的核心框架,该社区专注于利用软物质的独特空间和拓扑特性来创建具有精确定制的电子和磁性的拓扑绝缘体。这个社区将代表科学和工程界广泛的思想,语言和理想的融合。该项目旨在开发一个框架,使精确的拓扑控制材料的电子和磁性。实现这一愿景需要互补学科之间的融合,以最终融合软物质,实空间拓扑与动量空间(k空间)拓扑的领域。具体而言,其目的是利用DNA纳米技术提供的独特的可编程性和无与伦比的空间,结构和自组装能力,精确定制金属离子的拓扑结构,最终通过迭代,合理的设计创造磁性拓扑绝缘体。将磁性引入拓扑绝缘体是凝聚态物理学界目前尚未解决的一个重大挑战;而基于DNA的实空间拓扑控制为解决这一挑战提供了一条独特的途径。原子级精确的金属化DNA基序的发展将允许控制电子特性,以及设计特定目的的自组装能带结构。为实现这一目标,该项目将侧重于:i)在原子和分子水平上推进金属化碱基对的化学设计和合成; ii)在超分子水平上开发DNA组装体的结构和拓扑设计方法; iii)提取和量化小规模DNA组装体的电子性质; iv)在分子水平上对混合生物/凝聚物质的电子结构和输运性质进行建模; v)开发一种设计语言,用于理解如何将DNA纳米技术提供的独特空间拓扑控制映射到所需的动量中-拓扑绝缘体中电子空间拓扑控制通过这些步骤,该项目将设计和实施初步的原理验证TI设计,并为一个新的社区播下种子,该社区将在未来几十年维持这一新生领域。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Hihath其他文献
Nongjian Tao (1963–2020)
陶农建 (1963–2020)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:38.3
- 作者:
Joshua Hihath;S. Lindsay - 通讯作者:
S. Lindsay
Échafaudages auto-assemblés de protéines bêta-solénoïdes
β-solénoïdes 蛋白质的自动组装
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Daniel J. Cox;Gang Liu;Michael D. Toney;Xi Chen;Joshua Hihath;G. Zimanyi;Natha Robert Hayre;Marie Christine Scholler de Peralta - 通讯作者:
Marie Christine Scholler de Peralta
Molecular electronics go synaptic
分子电子学走向突触
- DOI:
10.1038/s41563-022-01406-y - 发表时间:
2022-11-21 - 期刊:
- 影响因子:38.500
- 作者:
Joshua Hihath - 通讯作者:
Joshua Hihath
Charge transport in the inverted Marcus region
倒置马库斯区域中的电荷传输
- DOI:
10.1038/s41565-018-0115-1 - 发表时间:
2018-03-26 - 期刊:
- 影响因子:34.900
- 作者:
Joshua Hihath - 通讯作者:
Joshua Hihath
Joshua Hihath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Hihath', 18)}}的其他基金
FMRG: Bio: Manufacturing Ultra-High-Density DNA-Enabled Nanoelectronics Systems
FMRG:生物:制造超高密度 DNA 纳米电子系统
- 批准号:
2328217 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
Combined Single-Molecule Raman and Conductance Spectroscopies for Understanding Electric Field-Controlled Chemistry
结合单分子拉曼光谱和电导光谱来了解电场控制化学
- 批准号:
2204223 - 财政年份:2022
- 资助金额:
$ 359.98万 - 项目类别:
Continuing Grant
Combined Single-Molecule Raman and Conductance Spectroscopies for Understanding Electric Field-Controlled Chemistry
结合单分子拉曼光谱和电导光谱来了解电场控制化学
- 批准号:
2239226 - 财政年份:2022
- 资助金额:
$ 359.98万 - 项目类别:
Continuing Grant
FMSG: DNA-based Assembly of Manufacturable NanoElectronic Device
FMSG:基于 DNA 的可制造纳米电子器件组装
- 批准号:
2036865 - 财政年份:2020
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807555 - 财政年份:2018
- 资助金额:
$ 359.98万 - 项目类别:
Continuing Grant
Controlling Thermal Transport in Hybrid, 2D, Thermoelectric Devices from the Bottom-Up
自下而上控制混合二维热电器件中的热传输
- 批准号:
1605338 - 财政年份:2016
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
Piezoresistive Effects in Single Molecule Devices
单分子器件中的压阻效应
- 批准号:
1231915 - 财政年份:2012
- 资助金额:
$ 359.98万 - 项目类别:
Continuing Grant
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
- 批准号:
2339866 - 财政年份:2024
- 资助金额:
$ 359.98万 - 项目类别:
Continuing Grant
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 359.98万 - 项目类别:
Fellowship
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
- 批准号:
2323989 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243665 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rational Design of Heterogeneous Catalysts for Sustainable Applications
可持续应用多相催化剂的合理设计
- 批准号:
2900533 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Studentship
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
RII Track-4:NSF: Rational Design and Engineering of Composite Electrolytes for All-solid-state Li-S Batteries
RII Track-4:NSF:全固态锂硫电池复合电解质的合理设计与工程
- 批准号:
2229305 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243667 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Standard Grant
Rational design of array-based nanozyme sensors
基于阵列的纳米酶传感器的合理设计
- 批准号:
DP230101650 - 财政年份:2023
- 资助金额:
$ 359.98万 - 项目类别:
Discovery Projects