Collaborative Research: An Intelligent Restoration System for a Self-healing Smart Grid (IRS-SG)
合作研究:用于自愈智能电网的智能恢复系统(IRS-SG)
基本信息
- 批准号:1408141
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How can we restore power more effectively after a major outage, such as a hurricane, a cascade blackout or a more local outage? Can we use modern computer-based methods to get better performance than what we have today, in a system which is mainly informal and based on guesswork under conditions of great stress and limited information? This new collaborative project will bring together an expert on power restoration with a pioneer of new intelligent computation methods for the power grid, in hopes of finding a more powerful and modern way to restore power more effectively. The goals are; (1) to develop an online adaptive restoration tool using advanced scalable computational intelligence techniques; (2) investigate a novel scheme to use renewable resources in system restoration; (3) explore a blackstart unit investment strategy to improve the self-healing capability; and (4) real-time implementation and demonstration of the new system on benchmark and utility power systems. The grant will include travel to New Zealand, to discuss use of the new system to help provide better response to events like earthquakes. It will also include outreach to Native Americans in the Dakotas. The problem of efficient restoration is very difficult from a technical point of view. A small number of researchers, like the lead PI, have developed a few tools of practical use in this problem, but it is still largely an unsolved problem. The main justification for NSF involvement in this area, and for significant hope of success, is the use of intelligent systems methods far beyond what anyone has applied in the past to this problem, methods pioneered in the intelligent systems part of the EPCN program at NSF(described for example in the book Handbook of RLADP edited by Frank Lewis and Derong Liu). Data from new sources such as synchrophasors will be part of this work. The underlying algorithms are designed from the start to run on massively paralleldistributed systems, such as Cellular Neural Network hardware, which allow much faster real-time computation than traditional sequential computers and algorithms.
我们如何在大停电后更有效地恢复电力,如飓风、连锁停电或更局部的停电?在一个主要是非正式的、基于巨大压力和有限信息条件下的猜测的系统中,我们能否使用现代计算机方法来获得比我们今天更好的性能?这个新的合作项目将汇集一位电力恢复专家和一位电网新智能计算方法的先驱,希望找到一种更强大、更现代的方法来更有效地恢复电力。目标是:(1)利用先进的可扩展计算智能技术开发在线自适应恢复工具;(2)研究在系统恢复中使用可再生资源的新方案;(3)探索提高自愈能力的黑启动机组投资策略;以及(4)在基准和公用事业电力系统上实时实施和演示新系统。这笔赠款将包括前往新西兰,讨论使用新系统,以帮助更好地应对地震等事件。它还将包括与达科他州的美洲原住民的外联活动。从技术角度来看,有效恢复的问题非常困难。少数研究人员,如首席PI,已经开发了一些实用工具来解决这个问题,但它在很大程度上仍然是一个未解决的问题。美国国家科学基金会参与这一领域的主要理由,以及成功的重大希望,是使用智能系统方法,远远超出了过去任何人对这个问题的应用,这些方法是美国国家科学基金会EPCN计划智能系统部分的先驱(例如,在Frank刘易斯和Derong Liu编辑的《RLADP手册》中描述的)。来自同步相量等新来源的数据将是这项工作的一部分。底层算法从一开始就被设计为在大规模并行分布式系统上运行,例如细胞神经网络硬件,它允许比传统的顺序计算机和算法更快的实时计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh Venayagamoorthy其他文献
Ganesh Venayagamoorthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganesh Venayagamoorthy', 18)}}的其他基金
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318612 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks
合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设
- 批准号:
2131070 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Real-Time Intelligence for Smart Electric Grid Operations (RISE)
合作研究:规划资助:I/UCRC 智能电网运营实时智能 (RISE)
- 批准号:
1464637 - 财政年份:2015
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Scalable Intelligent Power Monitoring and Optimal Control of Distributed Energy Systems Using Adaptive Critics
使用自适应批评的分布式能源系统的可扩展智能电力监控和优化控制
- 批准号:
1308192 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
AIR Option 2: Research Alliance Situational Intelligence for Smart Grid Optimization and Intelligent Control
AIR选项2:智能电网优化和智能控制研究联盟态势智能
- 批准号:
1312260 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: Computational Intelligence Methods for Dynamic Stochastic Optimization of Smart Grid Operation with High Penetration of Renewable Energy
合作研究:可再生能源高渗透智能电网运行动态随机优化的计算智能方法
- 批准号:
1232070 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
EFRI-COPN: Neuroscience and Neural Networks for Engineering the Future Intelligent Electric Power Grid
EFRI-COPN:用于设计未来智能电网的神经科学和神经网络
- 批准号:
1238097 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
RAPID: Impact of Earthquakes on the Electricity Infrastructure
RAPID:地震对电力基础设施的影响
- 批准号:
1216298 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CAREER: Scalable Learning and Adaptation with Intelligent Techniques and Neural Networks for Reconfiguration and Survivability of Complex Systems
职业:利用智能技术和神经网络进行可扩展的学习和适应,以实现复杂系统的重新配置和生存能力
- 批准号:
1231820 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
- 批准号:
2322056 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
- 批准号:
2322055 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
- 批准号:
2322058 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
- 批准号:
2322057 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
- 批准号:
2300156 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant