CAREER: Scalable Learning and Adaptation with Intelligent Techniques and Neural Networks for Reconfiguration and Survivability of Complex Systems

职业:利用智能技术和神经网络进行可扩展的学习和适应,以实现复杂系统的重新配置和生存能力

基本信息

  • 批准号:
    1231820
  • 负责人:
  • 金额:
    $ 2.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-01-13 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

Recently, intelligent techniques and adaptive critic designs have received increasing attention. The dynamic stochastic optimization (DSO) of complex systems such as the electric power grid and its parts can be formulated as minimization and/or maximization of certain quantities. The electric power grid is faced with deregulation and an increased demand for high-quality and reliable electricity for our digital economy, and coupled with interdependencies with other critical infrastructures, it is becoming more and more stressed. Intelligent systems technology will play an important role in carrying out DSO to improve the network efficiency and eliminate congestion problems without seriously diminishing reliability and security. This project proposes to investigate ways in which the power grid can be dynamically optimized, as a testbed for advanced brain-like stochastic identifiers and controllers.This project will advance knowledge and understanding on how to carry out optimization of a dynamic stochastic system. A novel local and global dynamic stochastic optimization strategy for a large scale complex system will be designed. The operating safety margins that currently exist on the large complex systems such as the electric power grid will be minimized, thus, allowing maximum utilization of existing resources with increased system reliability and security with optimal settings on devices throughout the entire system. The capability of carrying out dynamic stochastic optimization is the dream of today. This proposal is a first step in unfolding this dream to reality using brain-like systems with learning and adaptation based on approximate dynamic programming, advanced neural networks and other intelligent techniques on complex systems. In addition, system survivability and availability will be increased by improving reliability and fault tolerance of digital hardware, where the critical algorithms are implemented, using evolution and intelligent techniques. Fault tolerant designs to the unpredictable means robustness, security and safety. The project will also include a major component of educational outreach and of international collaboration including intellectual exchange via faculty and student exchanges between the U.S. and Nigeria, and US and Brazil.
最近,智能技术和自适应评论家设计受到了越来越多的关注。复杂系统的动态随机优化(DSO),例如电力电网及其部分,可以以最小化和/或一定量的最大化为例。电力电网面临放松管制,对我们的数字经济的高质量和可靠电力的需求增加,再加上与其他关键基础设施的相互依存关系,它变得越来越压力。智能系统技术将在执行DSO以提高网络效率并消除拥塞问题的情况下发挥重要作用,而无需大大降低可靠性和安全性。该项目提议研究可以动态优化电网的方法,作为对高级脑型随机标识符和控制器的测试床。该项目将提高知识和理解如何对动态随机系统进行优化。将设计一种新型的本地和全球动态随机优化策略,用于大规模复杂系统。当前存在于大型复杂系统(例如电力网格)上的操作安全边际将被最小化,从而使现有资源最大程度地利用,并且在整个系统中的设备上具有最佳的设置,并提高了系统的可靠性和安全性。进行动态随机优化的能力是当今的梦想。该提案是将这个梦想展现为现实的第一步,该梦想使用脑型系统,基于近似动态编程,先进的神经网络和其他关于复杂系统的智能技术的学习和适应。此外,使用进化和智能技术实施关键算法的数字硬件的可靠性和可容忍度,将通过提高可靠性和容错性来提高系统的生存能力和可用性。无法预测的容错设计意味着鲁棒性,安全性和安全性。该项目还将包括教育外展和国际合作的主要组成部分,包括通过教职员工和美国和尼日利亚之间的学生交流以及美国和巴西之间的交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ganesh Venayagamoorthy其他文献

Ganesh Venayagamoorthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ganesh Venayagamoorthy', 18)}}的其他基金

Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
  • 批准号:
    2318612
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks
合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设
  • 批准号:
    2131070
  • 财政年份:
    2021
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Real-Time Intelligence for Smart Electric Grid Operations (RISE)
合作研究:规划资助:I/UCRC 智能电网运营实时智能 (RISE)
  • 批准号:
    1464637
  • 财政年份:
    2015
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Collaborative Research: An Intelligent Restoration System for a Self-healing Smart Grid (IRS-SG)
合作研究:用于自愈智能电网的智能恢复系统(IRS-SG)
  • 批准号:
    1408141
  • 财政年份:
    2014
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Scalable Intelligent Power Monitoring and Optimal Control of Distributed Energy Systems Using Adaptive Critics
使用自适应批评的分布式能源系统的可扩展智能电力监控和优化控制
  • 批准号:
    1308192
  • 财政年份:
    2013
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
AIR Option 2: Research Alliance Situational Intelligence for Smart Grid Optimization and Intelligent Control
AIR选项2:智能电网优化和智能控制研究联盟态势智能
  • 批准号:
    1312260
  • 财政年份:
    2013
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Intelligence Methods for Dynamic Stochastic Optimization of Smart Grid Operation with High Penetration of Renewable Energy
合作研究:可再生能源高渗透智能电网运行动态随机优化的计算智能方法
  • 批准号:
    1232070
  • 财政年份:
    2012
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
EFRI-COPN: Neuroscience and Neural Networks for Engineering the Future Intelligent Electric Power Grid
EFRI-COPN:用于设计未来智能电网的神经科学和神经网络
  • 批准号:
    1238097
  • 财政年份:
    2012
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
RAPID: Impact of Earthquakes on the Electricity Infrastructure
RAPID:地震对电力基础设施的影响
  • 批准号:
    1216298
  • 财政年份:
    2012
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模复杂动态网络可扩展与可泛化表征学习研究
  • 批准号:
    62272191
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
大规模复杂动态网络可扩展与可泛化表征学习研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Continuing Grant
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
Investigating the role of sleep in brain resilience during aging using a scalable and short-lived vertebrate model
使用可扩展且寿命较短的脊椎动物模型研究睡眠在衰老过程中大脑恢复能力中的作用
  • 批准号:
    10740068
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Continuing Grant
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    2324651
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了