FMitF: Track I: Program Synthesis for Robot Learning from Demonstrations
FMITF:轨道 I:机器人从演示中学习的程序综合
基本信息
- 批准号:2319471
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As robots become more widely available and more capable, end-users of such consumer robots will inevitably expect to be able to teach robots how to perform new tasks. Learning from demonstration (or LfD, for short) is a popular paradigm for this problem, where a user demonstrates how to perform the task, and the robot learns a policy that captures what sequence of actions to perform to complete the task. Most existing LfD techniques rely on neural networks to learn such policies. While promising in some settings, such techniques suffer from key limitations, such as requiring large amounts of training data and lacking interpretability. This project's novelties are in addressing these limitations for robot LfD by combining neural networks (which are very effective for perception tasks) with symbolic learning, which excels at reasoning skills. The project's impacts are 1) introducing a new language to seamlessly merge learning programs consisting of both neural- and symbolic- components, 2) providing guarantees that the learned programs satisfy desired notions of correctness, and 3) allowing such learning to be performed with more realistic, noisy, real-world data. The project's contributions also include training and mentoring of students, developing novel teaching curriculum that integrate robotics with formal methods, and empowering more scalable, safe, and interpretable learning for robots. The research objective of this project is to develop a new LfD paradigm based on program synthesis, with the goal of putting robot learning on a more formal, interpretable, and less data-hungry footing. The key intellectual merit of the project lies in the development of a new set of foundational LfD techniques based on program synthesis. The project will advance the state-of-the-art in robot learning from demonstration by making it possible to learn, in a data-efficient way, programmatic policies that are interpretable and verifiable. The project will also advance the state-of-the-art in program synthesis by developing novel techniques that target the unique challenges of the robotics domain, including noisy and high-dimensional sensor data and uncertain interactions with the environment. In addition, the project will also advance the state-of-the-art in verified learning by considering desired correctness criteria. Finally, the project will make advances in the field of learning from unlabeled demonstrations by learning robot execution policies in the absence of a mapping from states to high-level robot actions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着机器人变得越来越广泛,能力越来越强,这种消费机器人的最终用户将不可避免地期望能够教机器人如何执行新任务。从演示中学习(或简称LfD)是这个问题的一个流行范例,其中用户演示如何执行任务,机器人学习一个策略,该策略捕获要执行的动作序列以完成任务。大多数现有的LfD技术依赖于神经网络来学习这些策略。虽然在某些情况下很有前途,但这些技术受到关键限制,例如需要大量的训练数据和缺乏可解释性。该项目的新颖之处在于通过将神经网络(对感知任务非常有效)与擅长推理技能的符号学习相结合,解决了机器人LfD的这些限制。该项目的影响是1)引入一种新的语言来无缝合并由神经和符号组件组成的学习程序,2)提供学习程序满足所需正确性概念的保证,以及3)允许使用更真实,嘈杂,真实世界的数据进行这种学习。该项目的贡献还包括培训和指导学生,开发将机器人技术与正式方法相结合的新型教学课程,以及为机器人提供更具可扩展性,安全性和可解释性的学习。该项目的研究目标是开发一种基于程序合成的新LfD范式,目标是将机器人学习置于更正式,可解释和更少数据饥饿的基础上。该项目的主要智力价值在于开发了一套基于程序合成的新的基础LfD技术。该项目将通过以数据高效的方式学习可解释和可验证的编程策略,推进机器人学习的最新技术。该项目还将通过开发针对机器人领域独特挑战的新技术,包括噪声和高维传感器数据以及与环境的不确定交互,来推进程序合成的最新技术。此外,该项目还将通过考虑所需的正确性标准来推进验证学习的最新技术。最后,该项目将通过在没有从状态到高级机器人动作的映射的情况下学习机器人执行策略,在从未标记的演示中学习的领域取得进展。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isil Dillig其他文献
Metric Program Synthesis
度量程序综合
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
John Feser;Isil Dillig;Armando Solar-Lezama - 通讯作者:
Armando Solar-Lezama
Isil Dillig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isil Dillig', 18)}}的其他基金
Collaborative Research: SHF: Core: Medium: Program Synthesis for Schema Changes
协作研究:SHF:核心:媒介:模式更改的程序综合
- 批准号:
2210831 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918889 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
- 批准号:
1901376 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Effective Formal Reasoning for Mobile Malware
SaTC:核心:媒介:协作:移动恶意软件的有效形式推理
- 批准号:
1908304 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
I-Corps: An Interactive Query Interface
I-Corps:交互式查询界面
- 批准号:
1831005 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
SHF: Small: Scalable Program Synthesis using Counterexample-Guided Abstraction Refinement
SHF:小型:使用反例引导的抽象细化的可扩展程序综合
- 批准号:
1811865 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Computer-Aided Programming for Data Science
SHF:媒介:协作研究:数据科学计算机辅助编程
- 批准号:
1762299 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
SHF:Small:Analysis, Repair, and Synthesis for k-Safety
SHF:Small:k-安全的分析、修复和合成
- 批准号:
1712067 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: UNITY: Bridging the Gap Between Program Analyzers and Deductive Verifiers via Abductive Reasoning
职业:UNITY:通过归纳推理弥合程序分析器和演绎验证器之间的差距
- 批准号:
1453386 - 财政年份:2015
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
相似海外基金
FDSS Track 2: Building a Space Physics Program at the University of Texas at Arlington
FDSS 第 2 轨:在德克萨斯大学阿灵顿分校建立空间物理项目
- 批准号:
2348000 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
ExpandQISE: Track 2: A Quantum Science Education and Research Program for HBCUs: Exotic Physics and Applications of Solid-State Qubits
ExpandQISE:轨道 2:HBCU 的量子科学教育和研究计划:奇异物理学和固态量子位的应用
- 批准号:
2329067 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Multi-Track Post-Baccalaureate Research Education Program (MT PREP)
多轨学士后研究教育计划 (MT PREP)
- 批准号:
10556791 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
RII Track-2 FEC: An Interdisciplinary Program for Research, Education, and Outreach on Climate Change and Adaptive Resilience in the Yazoo - Mississippi Delta
RII Track-2 FEC:亚祖 - 密西西比三角洲气候变化和适应性恢复力研究、教育和推广的跨学科计划
- 批准号:
2316382 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Cooperative Agreement
SCC-CIVIC-PG Track B: A Coordinated Food Hub Network and Farm to Institution Program: Building Bridges between Small Local Farmers and Institutions in New York State Capital Region
SCC-CIVIC-PG 轨道 B:协调的食品中心网络和农场到机构计划:在纽约州首府地区当地小农民和机构之间架起桥梁
- 批准号:
2228544 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
PREC Track 1: Cal State LA - MolSSI PREC Pathway to Diversity Program
PREC 轨道 1:加州州立大学洛杉矶分校 - MolSSI PREC 多元化途径计划
- 批准号:
2216858 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
HVAC Fast Track: Establishing A Competency-Based HVAC/R Apprenticeship Program
HVAC 快速通道:建立基于能力的 HVAC/R 学徒计划
- 批准号:
2202217 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track I: U.S.-Denmark program for advanced reliability analysis of ac/dc converters with INNOVAtive conTrols in glObe-spanning supergRid (INNOVATOR)
合作研究:IRES Track I:美国-丹麦项目,用于对全球超级电网中具有创新控制的交流/直流转换器进行高级可靠性分析(创新者)
- 批准号:
2152933 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track I: Flood Resilience Program - Integrated research experiences to foster understanding on how to increase resilience in flood-prone communities
合作研究:IRES 第一轨:防洪计划 - 综合研究经验,以促进对如何提高易受洪水影响的社区的防灾能力的理解
- 批准号:
2153697 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track I: U.S.-Denmark program for advanced reliability analysis of ac/dc converters with INNOVAtive conTrols in glObe-spanning supergRid (INNOVATOR)
合作研究:IRES Track I:美国-丹麦项目,用于对全球超级电网中具有创新控制的交流/直流转换器进行高级可靠性分析(创新者)
- 批准号:
2152905 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant