Collaborative Research: Cognitive Workload Classification in Dynamic Real-World Environments: A MagnetoCardioGraphy Approach
协作研究:动态现实环境中的认知工作负载分类:心磁图方法
基本信息
- 批准号:2320490
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cognitive workload refers to the level of mental effort put forth by an individual in response to a cognitive task. Unfortunately, no technology currently exists that can monitor an individual’s levels of cognitive workload in real-world environments using a seamless, reliable, and low-cost approach. We propose to fill this gap by using a novel magnetocardiography (MCG) system worn upon the subject’s chest to allow the sensor to collect the magnetic fields that are naturally emanated by the heart and associated with brain activity. This science is anticipated to greatly accelerate progress in such diverse disciplines as pediatric concussion recovery, pilot training, improved user-machine interfaces, injury prevention in construction environments, increased human performance in risky missions, and improved education outcomes. In addition to advances in basic science, the proposed research is expected to be of significant interest to students and the public. Through targeting interdisciplinary education and diverse recruitment, we intend to expose new audiences to STEM concepts via workshops and family-friendly outings. The proposed MCG sensor is smartly integrated in a Cyber-Physical System (CPS) with two inter-connected loops: (a) a human-in-the-loop that addresses changes in the thresholds of different cognitive states as a function of time, and (b) a non-human-in-the-loop that adapts the system’s algorithmic and hardware components for high-accuracy classification of cognitive workload with minimum resource usage. Our goals are to: (1) Build a knowledgebase concerning the impact of hardware/algorithmic advances upon MCG sensor performance in real-world settings. (2) Explore the classification of cognitive workload from MCG data and close the loop with the wearer for dynamic calibrations that address the time-varying thresholds of cognitive states. (3) Ensure operability in dynamic real-world settings and close the loop between the cyber and physical sides for minimal resource usage. (4) Validate the CPS within the framework of measuring cognitive workload for children with concussion. Without loss of generality, we select this population given the immense clinical potential: the effects of cognitive activity on pediatric concussion recovery are currently unknown, largely due to the difficulties in quantifying cognitive activity workload.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
认知工作负荷是指个体在完成认知任务时所付出的精神努力水平。不幸的是,目前还没有一种技术可以使用无缝、可靠和低成本的方法来监测个人在现实环境中的认知工作负荷水平。我们建议通过使用一种新型的心磁图(MCG)系统来填补这一空白,该系统佩戴在受试者的胸部,以允许传感器收集由心脏自然发出并与大脑活动相关的磁场。预计这门科学将大大加快不同学科的进展,如小儿脑震荡恢复,飞行员培训,改进用户-机器界面,建筑环境中的伤害预防,提高人类在危险任务中的表现,以及改善教育成果。除了基础科学的进步,拟议的研究预计将引起学生和公众的极大兴趣。通过针对性的跨学科教育和多元化招聘,我们打算通过工作坊和家庭友好的郊游让新受众接触STEM概念。所提出的MCG传感器被智能地集成在具有两个互连环路的网络物理系统(CPS)中:(a)人在环路,其解决了作为时间的函数的不同认知状态的阈值的变化,以及(B)非人在环路,其适应系统的算法和硬件组件,以最小的资源使用对认知工作负荷进行高精度分类。我们的目标是:(1)建立关于硬件/算法进步对真实环境中MCG传感器性能的影响的知识库。(2)从MCG数据中探索认知工作负荷的分类,并与佩戴者一起完成动态校准,以解决认知状态随时间变化的阈值。(3)确保在动态现实环境中的可操作性,并关闭网络和物理端之间的循环,以最大限度地减少资源使用。(4)在脑震荡儿童认知负荷测量框架内评估CPS。在不失一般性的情况下,我们选择了这个人群,因为它具有巨大的临床潜力:认知活动对小儿脑震荡恢复的影响目前尚不清楚,主要是由于量化认知活动工作量的困难。这个奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Asimina Kiourti其他文献
Stray energy transfer during endoscopy
- DOI:
10.1007/s00464-017-5427-y - 发表时间:
2017-02-15 - 期刊:
- 影响因子:2.700
- 作者:
Edward L. Jones;Amin Madani;Douglas M. Overbey;Asimina Kiourti;Satheesh Bojja-Venkatakrishnan;Dean J. Mikami;Jeffrey W. Hazey;Todd R. Arcomano;Thomas N. Robinson - 通讯作者:
Thomas N. Robinson
Asimina Kiourti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Asimina Kiourti', 18)}}的其他基金
High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
- 批准号:
2244882 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
CAREER: Multi-Utility Textile Electromagnetics for Motion Capture and Tissue Monitoring Cyber-Physical Systems
职业:用于运动捕捉和组织监测网络物理系统的多功能纺织电磁学
- 批准号:
2042644 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Magneto-Inductive Waveguides: Interconnecting the Next Generation of Wearables and Implants
磁感应波导:互连下一代可穿戴设备和植入物
- 批准号:
2053318 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
EAGER: A Magneto-Inductive Framework for Seamless Monitoring of Joint Kinematics
EAGER:用于无缝监测关节运动学的磁感应框架
- 批准号:
1842531 - 财政年份:2018
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: Referential alarm calling as a window into the mechanisms and evolution of a complex cognitive phenotype
合作研究:参考警报呼叫作为了解复杂认知表型的机制和演化的窗口
- 批准号:
2417581 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335800 - 财政年份:2024
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319619 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319617 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: Cognitive Workload Classification in Dynamic Real-World Environments: A MagnetoCardioGraphy Approach
协作研究:动态现实环境中的认知工作负载分类:心磁图方法
- 批准号:
2320491 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319618 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Continuing Grant
Collaborative Research: DARE: A Personalized Assistive Robotic System that assesses Cognitive Fatigue in Persons with Paralysis
合作研究:DARE:一种评估瘫痪者认知疲劳的个性化辅助机器人系统
- 批准号:
2226164 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Assessment of Cognitive Decline using Multimodal Neuroimaging with Embedded Artificial Intelligence
合作研究:SCH:使用多模态神经影像和嵌入式人工智能评估认知衰退
- 批准号:
10438005 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别: