Electrically Conductive 2D Metal-Organic Frameworks and Covalent Organic Frameworks Featuring Built-in Alternating pi-Donor/Acceptor Stacks with Efficient Charge Transport Capacity

导电二维金属有机框架和共价有机框架,具有内置交替 pi 供体/受体堆栈,具有高效的电荷传输能力

基本信息

  • 批准号:
    2321365
  • 负责人:
  • 金额:
    $ 57.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYSustaining the rapid advances of modern electronics and clean energy technologies requires continuous innovation and supply of easily accessible smart materials that can transport and store electrical charges in a programmable fashion. Owing to their synthetic accessibility, structural modularity, and functional tunability, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) hold great potentials to serve as active components of next-generation electronics and energy-storage devices. Electrical conductivity—a product of charge carrier concentration and mobility—however, remains one of the most elusive traits of MOFs and COFs, prompting researchers to devise new design and synthetic strategies to engineer this much desired electronic property in these crystalline framework materials. With support from the Solid State and Materials Chemistry program in the Division of Materials Research and the Established Program to Stimulate Competitive Research (EPSCoR), Prof. Saha and his research group at Clemson University are developing and implementing a new design strategy to promote long-range out-of-plane charge transport in two-dimensional (2D) MOFs and COFs by incorporating cofacially stacked alternating electron-rich (pi-donor) and electron-deficient (pi-acceptor) arrays and then exploiting their efficient through-space charge delocalization capability in these solid-state materials, which are expected to generate promising intrinsic conductivity. This research project is not only producing novel electrically conductive 2D MOFs and COFs with unique structures and compositions, but also creating an innovative design strategy that can simultaneously facilitate in-plane and out-of-plane charge transport in two orthogonal directions through the layered networks and pi-donor/acceptor stacks, respectively, and thus boost the bulk conductivity of these emerging smart materials. This NSF-funded project is also enabling the PI to develop skilled workforce for future innovations by engaging and mentoring graduate, undergraduate, postdoctoral, and high-school students in cutting-edge materials research, inspire underrepresented minorities to pursue higher education in STEM, and raise scientific awareness of the society through various education and outreach activities at local schools, science museums, and public forums. TECHNICAL SUMMARYOwing to their diverse potentials to serve as active components of modern electronics and energy storage devices, electrically conductive metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as most coveted and explored functional materials. Yet, electrical conductivity, which is a function of charge carrier concentration and charge mobility, remains one of the most elusive features of these porous crystalline framework materials chiefly because they often lack efficient charge transport pathways. In two-dimensional (2D) MOFs, electronic conduction can occur within the planes through coordination and conjugated pi-bonds and/or across the planes through pi-stacked layers, whereas in 2D COFs, the latter represent the primary transport pathways. The large disparities between in-plane and out-of-plane charge transport in two orthogonal directions often render the conductivity of these materials highly anisotropic (i.e., direction dependent) and dampen their overall bulk conductivity. To address these issues and simultaneously promote both in- and out-of-plane charge transport such that it leads to higher bulk conductivity in 2D MOFs and COFs, in this project supported by NSF's Solid State and Materials Chemistry (SSMC) Program, Prof. Sourav Saha and his research group at Clemson University are pursuing novel design and synthetic strategies where they incorporate built-in alternating pi-donor/acceptor stacks inside 2D layered frameworks that can facilitate out-of-plane charge transport, bringing this typically less efficient pathway on par with through-bond conduction pathways. Understanding how pi-donor/acceptor stacks consisting of different complementary pi-donor and acceptor units embedded in 2D MOFs and COFs affect their out-of-plane charge transport capability and thus the overall bulk conductivity is creating a new design strategy for next-generation electrically conductive MOFs and COFs. This project is also enabling the PI to fulfill his longstanding commitment to develop skilled workforce capable of leading future innovations by guiding diverse group of researchers to execute complex multifaceted research, motivate minority students to pursue higher education in STEMs, and raise a scientifically aware society through various outreach and educational activities in local community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要维持现代电子和清洁能源技术的快速发展需要不断创新和提供易于获取的智能材料,这些材料可以以可编程方式传输和存储电荷。由于其合成可接近性、结构模块化和功能可调性,金属有机框架(MOF)和共价有机框架(COF)具有作为下一代电子和能量存储设备的活性组件的巨大潜力。然而,电导率(载流子浓度和迁移率的产物)仍然是 MOF 和 COF 最难以捉摸的特性之一,促使研究人员设计新的设计和合成策略,以在这些晶体框架材料中设计这种非常理想的电子特性。在材料研究部的固态和材料化学项目以及刺激竞争研究既定项目 (EPSCoR) 的支持下,萨哈教授和他在克莱姆森大学的研究小组正在开发和实施一种新的设计策略,通过结合共面堆叠交替的富电子(π 供体)和缺电子材料,促进二维 (2D) MOF 和 COF 中的长程面外电荷传输。 (π受体)阵列,然后在这些固态材料中利用其高效的空间电荷离域能力,预计将产生有前景的本征电导率。该研究项目不仅生产具有独特结构和成分的新型导电2D MOF和COF,而且还创建了一种创新的设计策略,可以分别通过分层网络和pi供体/受体堆栈同时促进两个正交方向的面内和面外电荷传输,从而提高这些新兴智能材料的体电导率。这个由 NSF 资助的项目还使 PI 能够通过吸引和指导研究生、本科生、博士后和高中生进行尖端材料研究,培养未来创新的熟练劳动力,激励代表性不足的少数群体接受 STEM 高等教育,并通过当地学校、科学博物馆和公共论坛的各种教育和推广活动提高社会的科学意识。技术摘要由于导电金属有机框架(MOF)和共价有机框架(COF)作为现代电子和储能设备活性成分的多种潜力,它们已成为最令人垂涎​​和探索的功能材料。然而,作为载流子浓度和电荷迁移率函数的电导率仍然是这些多孔晶体框架材料最难以捉摸的特征之一,主要是因为它们通常缺乏有效的电荷传输路径。在二维 (2D) MOF 中,电子传导可以通过配位和共轭 pi 键在平面内发生,和/或通过 pi 堆叠层在平面上发生,而在 2D COF 中,后者代表主要传输路径。两个正交方向上的面内和面外电荷传输之间的巨大差异通常使这些材料的电导率具有高度各向异性(即方向依赖性)并削弱其整体电导率。为了解决这些问题并同时促进面内和面外电荷传输,从而在 2D MOF 和 COF 中实现更高的体电导率,在 NSF 固态和材料化学 (SSMC) 计划支持的这个项目中,Sourav Saha 教授和他在克莱姆森大学的研究小组正在寻求新颖的设计和合成策略,其中他们将内置的交替 pi 供体/受体堆栈纳入 2D 分层结构中 可以促进平面外电荷传输的框架,使这种通常效率较低的路径与通过键合的传导路径相当。了解嵌入在 2D MOF 和 COF 中的由不同互补 pi 供体和受体单元组成的 pi 供体/受体堆栈如何影响其平面外电荷传输能力,从而影响整体电导率,从而为下一代导电 MOF 和 COF 创建新的设计策略。该项目还使 PI 能够履行其长期承诺,即通过指导不同的研究人员群体进行复杂的多方面研究,培养能够引领未来创新的熟练劳动力,激励少数族裔学生接受 STEM 高等教育,并通过当地社区的各种外展和教育活动提高社会的科学意识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。 优点和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rare Guest-Induced Electrical Conductivity of Zn-Porphyrin Metallacage Inclusion Complexes Featuring π-Donor/Acceptor/Donor Stacks
  • DOI:
    10.1021/acsami.3c15959
  • 发表时间:
    2023-12-18
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Benavides,Paola A.;Gordillo,Monica A.;Saha,Sourav
  • 通讯作者:
    Saha,Sourav
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sourav Saha其他文献

Artificial intelligence data-driven 3D model for AIS.
AIS 的人工智能数据驱动 3D 模型。
DNA Topoisomerases of Kinetoplastid Parasites: Brief Overview and Recent Perspectives.
动质体寄生虫的 DNA 拓扑异构酶:简要概述和最新观点。
A Comparative Analysis of CNN-Based Pretrained Models for the Detection and Prediction of Monkeypox
基于 CNN 的猴痘检测和预测预训练模型的比较分析
  • DOI:
    10.48550/arxiv.2302.10277
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Saha;Trina Chakraborty;R. Sulaiman;Tithi Paul
  • 通讯作者:
    Tithi Paul
Mixed convection in an open emT/em-shaped cavity utilizing the effect of different inflow conditions with Alsub2/subOsub3/sub-water nanofluid flow
利用不同流入条件对 Al₂O₃-水纳米流体流动的影响,在开放的 emT/em 形腔中进行混合对流
  • DOI:
    10.1016/j.rineng.2022.100862
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Tahmidul Haque Ruvo;Sourav Saha;Satyajit Mojumder;Sumon Saha
  • 通讯作者:
    Sumon Saha
MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis
MAP123-EP:基于力学的数据驱动数值弹塑性分析方法

Sourav Saha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sourav Saha', 18)}}的其他基金

Charge Transporting Supramolecular pi-Donor/Acceptor Arrays Based on Redox-Active Metallacycles, Metal-Organic Cages, and Daisy-Chain Coordination Polymers
基于氧化还原活性金属环、金属有机笼和菊花链配位聚合物的电荷传输超分子π供体/受体阵列
  • 批准号:
    2203985
  • 财政年份:
    2022
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant
Guest-Induced Electrical Conductivity and Photovoltaic Activity of Metal-Organic Frameworks
金属有机框架的客体诱导导电性和光伏活性
  • 批准号:
    1809092
  • 财政年份:
    2018
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant
Reversible Anion and Ion-Pair Recognition under Electronic Control
电子控制下的可逆阴离子和离子对识别
  • 批准号:
    1660329
  • 财政年份:
    2016
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant
Reversible Anion and Ion-Pair Recognition under Electronic Control
电子控制下的可逆阴离子和离子对识别
  • 批准号:
    1507529
  • 财政年份:
    2015
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant

相似海外基金

Materials Nanotectonics: Designing Conductive Inorganic Porous Materials
材料纳米构造:设计导电无机多孔材料
  • 批准号:
    FL230100095
  • 财政年份:
    2024
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Australian Laureate Fellowships
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
  • 批准号:
    2904783
  • 财政年份:
    2024
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Studentship
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Standard Grant
Novel Hydroxide Ion Conductive Membranes for Advanced Ammonia Fuel Cell
用于先进氨燃料电池的新型氢氧化物离子导电膜
  • 批准号:
    DE230100407
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of conductive ferromagnetic oxide nanosheets and pioneering of printable spintronics
导电铁磁氧化物纳米片的开发和可印刷自旋电子学的开拓
  • 批准号:
    22KJ3113
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Anion conductive polymers: new development for energy devices
阴离子导电聚合物:能源器件的新发展
  • 批准号:
    22KF0156
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Standard Grant
Understanding Thermal Transport Properties in Electrically Conductive Polymers
了解导电聚合物的热传输特性
  • 批准号:
    2312559
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Standard Grant
Nano-toughening of Conductive Composites with High Electrical Ductility
高电延性导电复合材料的纳米增韧
  • 批准号:
    FT220100094
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    ARC Future Fellowships
Conductive Bamboo Composite
导电竹复合材料
  • 批准号:
    10074572
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了