Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
基本信息
- 批准号:2323082
- 负责人:
- 金额:$ 30.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As products become more intricate, it is very common that modern manufacturing processes which involve multiple stages are required. The output workpiece of one stage is the input workpiece of the next stage. In a multistage manufacturing system, not only does the health condition of a machine interact with incoming and outgoing product quality, but the outgoing product quality also impacts the machine health condition and product quality at downstream machines. Due to the complicated interactions among product quality and machine health conditions across multiple stages, for effective system monitoring and operational control, it is insufficient (even misleading) to consider product quality issues and machine condition degradation issues separately at each individual machine. With the fast progress of sensing and information technology, a large amount of product quality data and machine health condition data at multiple machines in a multistage manufacturing system are easily acquired and accessed. This project establishes a series of data-driven methodologies to achieve efficient monitoring and operation of multistage manufacturing systems through integrative modeling of product quality and machine health data. The developed methodologies are tested and validated in a laboratory testbed and on real production systems with industrial collaborators. This project contributes to workforce training by promoting the interdisciplinary research of manufacturing, computing, sensing, and data analytics and provides unique training opportunities for students through new curriculum development and various outreach activities.An integrated mathematical framework to describe spatial interactions among different machines and the temporal degradation of each machine is investigated. At the core of the framework, a flexible non-homogeneous hidden Markov model is used to describe the machine temporal degradation. The interactions between product quality and the machine health condition are considered by incorporating exogenous factors into the model. Designed around the integrative model, four interrelated research tasks include: (i) Learning quality interactions and local anomaly indicators, (ii) Learning machine degradation model and failure prognosis, (iii) Stochastic control for system-level operation optimization, and (iv) Testing and validation. The project provides added capabilities for a modern manufacturing factory by making it more integrated in control through the exploitation of ever-growing available quality data and machine health condition data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着产品变得越来越复杂,需要涉及多个阶段的现代制造工艺是非常常见的。一个阶段的输出工件是下一个阶段的输入工件。在多阶段制造系统中,不仅机器的健康状况与进出产品质量相互作用,而且出厂产品质量也影响下游机器的机器健康状况和产品质量。由于产品质量和机器健康状况在多个阶段之间的复杂相互作用,为了有效的系统监控和操作控制,在每台机器上单独考虑产品质量问题和机器状况退化问题是不够的(甚至是误导)。随着传感技术和信息技术的快速发展,在多级制造系统中的多个机器处的大量产品质量数据和机器健康状况数据被容易地获取和访问。该项目建立了一系列数据驱动的方法,通过对产品质量和机器健康数据的综合建模,实现多级制造系统的有效监控和运行。所开发的方法进行了测试和验证,在实验室测试平台和真实的生产系统与工业合作者。该项目通过促进制造、计算、传感和数据分析的跨学科研究来促进劳动力培训,并通过新课程开发和各种推广活动为学生提供独特的培训机会。研究了描述不同机器之间的空间相互作用和每个机器的时间退化的综合数学框架。在该框架的核心,一个灵活的非齐次隐马尔可夫模型被用来描述机器的时间退化。模型中考虑了产品质量和机器健康状况之间的相互作用,并引入了外部因素。围绕综合模型设计,四个相互关联的研究任务包括:(i)学习质量交互和局部异常指标,(ii)学习机器退化模型和故障预测,(iii)系统级操作优化的随机控制,以及(iv)测试和验证。该项目通过利用不断增长的可用质量数据和机器健康状况数据,使其在控制方面更加集成,从而为现代制造工厂提供了额外的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiyu Zhou其他文献
T-bet+ CD11c+ B cells are critical for anti-chromatin IgG production in the development of lupus
T-bet CD11c B 细胞对于狼疮发生过程中抗染色质 IgG 的产生至关重要
- DOI:
10.1101/116145 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shiyu Zhou;J. Qian;Yan Wang;Xiang Yu;Dai Dai;M. Dai;Lingling Wu;Z. Liao;Z. Xue;Jiehua Wang;G. Hou;Jianyang;Ma;J. Harley;Yuanjia Tang;N. Shen - 通讯作者:
N. Shen
Bioluminescence imaging of exogenous & endogenous cysteine in vivo with a highly selective probe
外源性生物发光成像
- DOI:
10.1016/j.bmcl.2020.126968 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Shilong Hu;Peilin Lu;Shiyu Zhou;Ting Kang;Ao Hai;Yaru Ma;Yiqing Liu;Bowen Ke;Minyong Li - 通讯作者:
Minyong Li
An O(log(n)4/3) space algorithm for (s, t) connectivity in undirected graphs
无向图中 (s, t) 连接的 O(log(n)4/3) 空间算法
- DOI:
10.1145/333979.333984 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
R. Armoni;A. Ta;A. Wigderson;Shiyu Zhou - 通讯作者:
Shiyu Zhou
Discrepancy sets and pseudorandom generators for combinatorial rectangles
组合矩形的差异集和伪随机生成器
- DOI:
10.1109/sfcs.1996.548500 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
R. Armoni;M. Saks;A. Wigderson;Shiyu Zhou - 通讯作者:
Shiyu Zhou
Multiscale causes of the 2022 Yangtze mega-flash drought under climate change
气候变化背景下2022年长江特大山洪干旱的多尺度成因
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xing Yuan;Yumiao Wang;Shiyu Zhou;Hua Li;Chenyuan Li - 通讯作者:
Chenyuan Li
Shiyu Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiyu Zhou', 18)}}的其他基金
Collaborative Research: Structural Fault Diagnosis and Prognosis Utilizing a Physics-guided Data Analytics Approach
合作研究:利用物理引导的数据分析方法进行结构故障诊断和预测
- 批准号:
1824761 - 财政年份:2018
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Enabling Cloud-Based Quality-Data Management Systems
启用基于云的质量数据管理系统
- 批准号:
1561512 - 财政年份:2016
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
SCH: EXP: Collaborative Research: Smart Asthma Management: Statistical modeling, prognostics, and intervention decision making
SCH:EXP:协作研究:智能哮喘管理:统计建模、预后和干预决策
- 批准号:
1343969 - 财政年份:2014
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Data-driven Statistical Prognosis and Service Decision Making for Teleservice Systems
GOALI/协作研究:数据驱动的远程服务系统统计预测和服务决策
- 批准号:
1335129 - 财政年份:2013
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Modeling, Monitoring, and Analysis of Spatial Point Patterns for Manufacturing Quality Control
GOALI/协作研究:用于制造质量控制的空间点模式的建模、监控和分析
- 批准号:
1161077 - 财政年份:2012
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Statistical Analysis and Control of Ultrasonic-based Aluminum Nano-composite Fabrication Processes
超声波铝纳米复合材料制造过程的统计分析与控制
- 批准号:
0926084 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding and Controlling Variation Propagation in Periodic Structures: From Geometry to Dynamic Response
GOALI/合作研究:理解和控制周期性结构中的变异传播:从几何到动态响应
- 批准号:
0856222 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Event-Log-Based Failure Prediction and Maintenance Service for After-Sales Engineering Systems
GOALI/协作研究:售后工程系统基于事件日志的故障预测和维护服务
- 批准号:
0757683 - 财政年份:2008
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
CAREER: Multilevel Self-Improving Variation Modeling and Diagnosis for Complex Manufacturing Processes
职业:复杂制造过程的多层次自我改进变异建模和诊断
- 批准号:
0545600 - 财政年份:2006
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Modeling, Analysis, and Control of Variation Propagation in Manufacturing Processes
制造过程中变异传播的建模、分析和控制
- 批准号:
0322147 - 财政年份:2003
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323084 - 财政年份:2024
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Collaborative Research: Physical Mechanism of Melt Pool Oscillation and Spatter Formation in Laser Powder Bed Fusion Additive Manufacturing
合作研究:激光粉末床熔融增材制造中熔池振荡和飞溅形成的物理机制
- 批准号:
2223014 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1931756 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1933779 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
2052063 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
1940230 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
1940163 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1933365 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: A Graph-Based Data Fusion Framework Towards Guiding A Hybrid Brain-Computer Interface
CHS:小型:协作研究:基于图的数据融合框架指导混合脑机接口
- 批准号:
2005957 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant