Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
基本信息
- 批准号:2323084
- 负责人:
- 金额:$ 20.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As products become more intricate, it is very common that modern manufacturing processes which involve multiple stages are required. The output workpiece of one stage is the input workpiece of the next stage. In a multistage manufacturing system, not only does the health condition of a machine interact with incoming and outgoing product quality, but the outgoing product quality also impacts the machine health condition and product quality at downstream machines. Due to the complicated interactions among product quality and machine health conditions across multiple stages, for effective system monitoring and operational control, it is insufficient (even misleading) to consider product quality issues and machine condition degradation issues separately at each individual machine. With the fast progress of sensing and information technology, a large amount of product quality data and machine health condition data at multiple machines in a multistage manufacturing system are easily acquired and accessed. This project establishes a series of data-driven methodologies to achieve efficient monitoring and operation of multistage manufacturing systems through integrative modeling of product quality and machine health data. The developed methodologies are tested and validated in a laboratory testbed and on real production systems with industrial collaborators. This project contributes to workforce training by promoting the interdisciplinary research of manufacturing, computing, sensing, and data analytics and provides unique training opportunities for students through new curriculum development and various outreach activities.An integrated mathematical framework to describe spatial interactions among different machines and the temporal degradation of each machine is investigated. At the core of the framework, a flexible non-homogeneous hidden Markov model is used to describe the machine temporal degradation. The interactions between product quality and the machine health condition are considered by incorporating exogenous factors into the model. Designed around the integrative model, four interrelated research tasks include: (i) Learning quality interactions and local anomaly indicators, (ii) Learning machine degradation model and failure prognosis, (iii) Stochastic control for system-level operation optimization, and (iv) Testing and validation. The project provides added capabilities for a modern manufacturing factory by making it more integrated in control through the exploitation of ever-growing available quality data and machine health condition data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着产品变得越来越复杂,需要涉及多个阶段的现代制造工艺是非常常见的。一个阶段的输出工件是下一个阶段的输入工件。在多阶段制造系统中,不仅机器的健康状况与进出产品质量相互作用,而且出厂产品质量也影响下游机器的机器健康状况和产品质量。由于产品质量和机器健康状况在多个阶段之间的复杂相互作用,为了有效的系统监控和操作控制,在每台机器上单独考虑产品质量问题和机器状况退化问题是不够的(甚至是误导)。随着传感技术和信息技术的快速发展,在多级制造系统中的多个机器处的大量产品质量数据和机器健康状况数据被容易地获取和访问。该项目建立了一系列数据驱动的方法,通过对产品质量和机器健康数据的综合建模,实现多级制造系统的有效监控和运行。所开发的方法进行了测试和验证,在实验室测试平台和真实的生产系统与工业合作者。该项目通过促进制造、计算、传感和数据分析的跨学科研究来促进劳动力培训,并通过新课程开发和各种推广活动为学生提供独特的培训机会。研究了描述不同机器之间的空间相互作用和每个机器的时间退化的综合数学框架。在该框架的核心,一个灵活的非齐次隐马尔可夫模型被用来描述机器的时间退化。模型中考虑了产品质量和机器健康状况之间的相互作用,并引入了外部因素。围绕综合模型设计,四个相互关联的研究任务包括:(i)学习质量交互和局部异常指标,(ii)学习机器退化模型和故障预测,(iii)系统级操作优化的随机控制,以及(iv)测试和验证。该项目通过利用不断增长的可用质量数据和机器健康状况数据,使其在控制方面更加集成,从而为现代制造工厂提供了额外的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Predictions for Central Lymph Node Metastasis of Papillary Thyroid Carcinoma via CNN-Based Fusion Modeling of Ultrasound Images
通过基于 CNN 的超声图像融合模型预测甲状腺乳头状癌中央淋巴结转移
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.9
- 作者:
Yong Chen;Yan;Z. Cai;Mian Jiang - 通讯作者:
Mian Jiang
Shock mitigation effects of cellular cladding on submersible hull subjected to deep underwater explosion
多孔包壳对深水下爆炸作用下潜水器的冲击缓解效果
- DOI:
10.1016/j.oceaneng.2016.03.037 - 发表时间:
2016-05 - 期刊:
- 影响因子:5
- 作者:
Caiyu Yin;Zeyu Jin;Yong Chen;Hongxing Hua - 通讯作者:
Hongxing Hua
Algorithm-level Feedback-controlled Adaptive data prefetcher: Accelerating data access for high-performance processors
算法级反馈控制自适应数据预取器:加速高性能处理器的数据访问
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:1.4
- 作者:
Yong Chen;Huaiyu Zhu;Hui Jin;Xian - 通讯作者:
Xian
Experimental investigation on the characteristics of maximum bubble size of subcooled flow boiling in narrow rectangular channel under different system pressure
不同系统压力下窄矩形通道过冷流沸腾最大气泡尺寸特性的实验研究
- DOI:
10.1016/j.ijheatmasstransfer.2021.121426 - 发表时间:
2021-09 - 期刊:
- 影响因子:5.2
- 作者:
Lin Zhang;Hanzhou Liu;Deqi Chen;Xiaowei Zhou;Yong Chen - 通讯作者:
Yong Chen
Determination of FCMC and SCMC and Speculation of Hexagonally Packed Rods Concentration and Palisade Layer Structure Concentration of SDBS and SDS by Ultraviolet-visible Spectrophotometry
紫外可见分光光度法测定FCMC和SCMC以及六方堆积棒浓度和SDBS和SDS栅栏层结构浓度的推测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1
- 作者:
Zhaoxi Huang;Fenghui Zhao;Min Liu;Yong Chen - 通讯作者:
Yong Chen
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
Conference: 2024 Manufacturing Science and Engineering Conference and 52nd North American Manufacturing Research Conference; Knoxville, Tennessee; 17-21 June 2024
会议:2024年制造科学与工程会议暨第52届北美制造研究会议;
- 批准号:
2344983 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Quantum Many-Body Physics in Spin-Orbit Coupled Bose Gases
自旋轨道耦合玻色气体中的量子多体物理
- 批准号:
2012185 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Continuing Grant
Phase-II IUCRC Texas Tech University: Center for Cloud and Autonomic Computing
第二阶段 IUCRC 德克萨斯理工大学:云和自主计算中心
- 批准号:
1939140 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Continuing Grant
Collaborative Research: CESER: EAGER: "FabWave" - A Pilot Manufacturing Cyberinfrastructure for Shareable Access to Information Rich Product Manufacturing Data
合作研究:CESER:EAGER:“FabWave”——用于共享访问信息丰富的产品制造数据的试点制造网络基础设施
- 批准号:
1812675 - 财政年份:2018
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Tuning Extreme-scale Storage Stack through Deep Reinforcement Learning
CSR:小型:协作研究:通过深度强化学习调整超大规模存储堆栈
- 批准号:
1817094 - 财政年份:2018
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Elements:Software:NSCI: Empowering Data-driven Discovery with a Provenance Collection, Management, and Analysis Software Infrastructure
元素:软件:NSCI:通过来源收集、管理和分析软件基础设施支持数据驱动的发现
- 批准号:
1835892 - 财政年份:2018
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Strain Based Devices for Switches and Memory Applications
合作研究:用于开关和存储器应用的基于应变的器件
- 批准号:
1711332 - 财政年份:2017
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Uncovering Vulnerabilities in Parallel File Systems for Reliable High Performance Computing
SHF:小型:协作研究:发现并行文件系统中的漏洞以实现可靠的高性能计算
- 批准号:
1718336 - 财政年份:2017
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Additive Manufacturing of Controlled Anisotropic Materials via Electrically Assisted Nanocomposite Fabrication
通过电辅助纳米复合材料制造受控各向异性材料的增材制造
- 批准号:
1663663 - 财政年份:2017
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Dynamics and Excitations of Spin-Orbit-Coupled Bose-Einstein Condensates
自旋轨道耦合玻色-爱因斯坦凝聚体的动力学和激发
- 批准号:
1708134 - 财政年份:2017
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323082 - 财政年份:2024
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Physical Mechanism of Melt Pool Oscillation and Spatter Formation in Laser Powder Bed Fusion Additive Manufacturing
合作研究:激光粉末床熔融增材制造中熔池振荡和飞溅形成的物理机制
- 批准号:
2223014 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1931756 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1933779 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
2052063 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
1940230 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
1940163 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Data Fusion for Characterizing and Understanding Water Flow Systems in Karst Aquifers
合作研究:用于表征和理解岩溶含水层水流系统的数据融合
- 批准号:
1933365 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: A Graph-Based Data Fusion Framework Towards Guiding A Hybrid Brain-Computer Interface
CHS:小型:协作研究:基于图的数据融合框架指导混合脑机接口
- 批准号:
2005957 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant