SCH: EXP: Collaborative Research: Smart Asthma Management: Statistical modeling, prognostics, and intervention decision making

SCH:EXP:协作研究:智能哮喘管理:统计建模、预后和干预决策

基本信息

  • 批准号:
    1343969
  • 负责人:
  • 金额:
    $ 47.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Asthma is a common lung disease with acute and chronic manifestations that impacts more than 22.2 million Americans or 7.9% of the population, including over 6.7 million children younger than 18 years of age. The cost of asthma is significant both for individuals and for the society as a whole. It is highly desirable to establish transformative technologies to improve the patient quality of life and reduce the cost of asthma management. The recent development in sensor and mobile computing technology provide great opportunities to establish Smart Asthma Management (SAM) systems and achieve a quantum leap in asthma management. Leveraging on the fast development of information infrastructure, patients can create a detailed temporal log recording their symptoms, medicine usage, and possibly vital physiological signals through an easy access to a website or their smart phones in SAM systems. This unprecedented continuous stream of patient-generated data in SAM systems provides us significant opportunities to better estimate patient condition and make clinical intervention decisions. However, since the information infrastructure of SAM has not become available until recently, very limited work is available for SAM systems. Against this background, this collaborative project aims to develop a suite of statistical modeling, monitoring, prognosis, and clinical intervention decision making methodologies based on a flexible yet rigorous multistate model to describe the evolving of patient conditions. The true underlying state of the patient is assumed unknown; however, there is reason to expect that it could be inferred from patient generated data such as the frequency of the rescue inhaler usage (the time and frequency of the rescue inhaler use is an important indicator of asthma control). Some anticipated advances include: (i) Multistate model with event intensity function as observations. The proposed methodology brings the mixed effect model and the multistate model into a unified framework to integrate the population information embedded in the historical records of multiple patients and the individual information collected in real-time in a quantitative way. (ii) Stochastic filtering approach for individual patient condition modeling and updating. The novel state space formulation enables efficient stochastic filtering algorithms to estimate and update the states and parameters in the multistate model. (iii) Clinical intervention decision support for patients and clinicians. The salient features of the proposed policy are that it is based on a condition-based policy and incorporates uncertainties in the patient condition model through a Partially Observable Markov Decision Process (POMDP) framework which has been widely used and proven to be very effective in the management of industrial systems. Plans are in place to evaluate the effectiveness of the resulting technologies in collaboration with clinical experts. The project is likely to contribute predictive technologies that could help reduce the cost and improve the quality of healthcare in the US, especially as it relates to effective management of chronic illnessess. Additional broader impacts of the project include enhanced research-based training opportunities for graduate and undergraduate students (including members of under-represented minorities) in healthcare engineering, statistics, and operation research; enrichment of the curricula in health systems in industrial engineering and operations research at the University of Wisconsin-Madison and the University of Iowa.
哮喘是一种常见的肺部疾病,具有急性和慢性表现,影响超过2220万美国人或7.9%的人口,包括超过670万18岁以下的儿童。哮喘的成本对于个人和整个社会都是巨大的。建立变革性技术以改善患者生活质量并降低哮喘管理成本是非常可取的。传感器和移动的计算技术的最新发展为建立智能哮喘管理(SAM)系统和实现哮喘管理的飞跃提供了巨大的机会。利用信息基础设施的快速发展,患者可以通过SAM系统轻松访问网站或智能手机,创建详细的时间日志,记录他们的症状,药物使用情况以及可能的重要生理信号。SAM系统中前所未有的患者生成数据的连续流为我们提供了更好地估计患者状况和做出临床干预决策的重要机会。然而,由于SAM的信息基础设施直到最近才可用,SAM系统的工作非常有限。在此背景下,这个合作项目的目的是开发一套统计建模,监测,预后和临床干预决策方法的基础上,灵活而严格的多状态模型来描述患者病情的演变。假设患者的真实潜在状态未知;然而,有理由预期可以从患者生成的数据(例如急救吸入器使用频率)推断出患者的真实潜在状态(急救吸入器使用的时间和频率是哮喘控制的重要指标)。一些预期的进展包括:(i)以事件强度函数作为观测值的多状态模型。所提出的方法将混合效应模型和多状态模型纳入一个统一的框架,以定量的方式整合嵌入在多个患者的历史记录中的群体信息和实时收集的个体信息。(ii)用于个体患者状况建模和更新的随机过滤方法。新的状态空间制定有效的随机滤波算法,以估计和更新的多状态模型中的状态和参数。(iii)为患者和临床医生提供临床干预决策支持。建议的政策的显着特点是,它是基于一个条件为基础的政策,并通过部分可观察马尔可夫决策过程(POMDP)框架,已被广泛使用,并证明是非常有效的工业系统的管理中的患者病情模型中的不确定性。我们已制定计划,与临床专家合作评估所产生技术的有效性。该项目可能有助于预测技术,有助于降低成本和提高美国医疗保健的质量,特别是因为它与慢性病的有效管理有关。该项目的其他更广泛的影响包括增强研究生和本科生(包括代表性不足的少数民族成员)在医疗保健工程,统计和运筹学的研究为基础的培训机会;在工业工程和运筹学在威斯康星大学麦迪逊分校和爱荷华州的大学在卫生系统的课程丰富。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiyu Zhou其他文献

Bioluminescence imaging of exogenous & endogenous cysteine in vivo with a highly selective probe
外源性生物发光成像
  • DOI:
    10.1016/j.bmcl.2020.126968
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Shilong Hu;Peilin Lu;Shiyu Zhou;Ting Kang;Ao Hai;Yaru Ma;Yiqing Liu;Bowen Ke;Minyong Li
  • 通讯作者:
    Minyong Li
T-bet+ CD11c+ B cells are critical for anti-chromatin IgG production in the development of lupus
T-bet CD11c B 细胞对于狼疮发生过程中抗染色质 IgG 的产生至关重要
  • DOI:
    10.1101/116145
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiyu Zhou;J. Qian;Yan Wang;Xiang Yu;Dai Dai;M. Dai;Lingling Wu;Z. Liao;Z. Xue;Jiehua Wang;G. Hou;Jianyang;Ma;J. Harley;Yuanjia Tang;N. Shen
  • 通讯作者:
    N. Shen
Multiscale causes of the 2022 Yangtze mega-flash drought under climate change
气候变化背景下2022年长江特大山洪干旱的多尺度成因
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xing Yuan;Yumiao Wang;Shiyu Zhou;Hua Li;Chenyuan Li
  • 通讯作者:
    Chenyuan Li
An O(log(n)4/3) space algorithm for (s, t) connectivity in undirected graphs
无向图中 (s, t) 连接的 O(log(n)4/3) 空间算法
  • DOI:
    10.1145/333979.333984
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Armoni;A. Ta;A. Wigderson;Shiyu Zhou
  • 通讯作者:
    Shiyu Zhou
UAV-aided Data Collection in Self Organized IoT Network for Social Augmented Reality
用于社交增强现实的自组织物联网网络中的无人机辅助数据收集

Shiyu Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiyu Zhou', 18)}}的其他基金

Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323082
  • 财政年份:
    2024
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Structural Fault Diagnosis and Prognosis Utilizing a Physics-guided Data Analytics Approach
合作研究:利用物理引导的数据分析方法进行结构故障诊断和预测
  • 批准号:
    1824761
  • 财政年份:
    2018
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Enabling Cloud-Based Quality-Data Management Systems
启用基于云的质量数据管理系统
  • 批准号:
    1561512
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Data-driven Statistical Prognosis and Service Decision Making for Teleservice Systems
GOALI/协作研究:数据驱动的远程服务系统统计预测和服务决策
  • 批准号:
    1335129
  • 财政年份:
    2013
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Modeling, Monitoring, and Analysis of Spatial Point Patterns for Manufacturing Quality Control
GOALI/协作研究:用于制造质量控制的空间点模式的建模、监控和分析
  • 批准号:
    1161077
  • 财政年份:
    2012
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Statistical Analysis and Control of Ultrasonic-based Aluminum Nano-composite Fabrication Processes
超声波铝纳米复合材料制造过程的统计分析与控制
  • 批准号:
    0926084
  • 财政年份:
    2009
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding and Controlling Variation Propagation in Periodic Structures: From Geometry to Dynamic Response
GOALI/合作研究:理解和控制周期性结构中的变异传播:从几何到动态响应
  • 批准号:
    0856222
  • 财政年份:
    2009
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Event-Log-Based Failure Prediction and Maintenance Service for After-Sales Engineering Systems
GOALI/协作研究:售后工程系统基于事件日志的故障预测和维护服务
  • 批准号:
    0757683
  • 财政年份:
    2008
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
CAREER: Multilevel Self-Improving Variation Modeling and Diagnosis for Complex Manufacturing Processes
职业:复杂制造过程的多层次自我改进变异建模和诊断
  • 批准号:
    0545600
  • 财政年份:
    2006
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
Modeling, Analysis, and Control of Variation Propagation in Manufacturing Processes
制造过程中变异传播的建模、分析和控制
  • 批准号:
    0322147
  • 财政年份:
    2003
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant

相似国自然基金

MYB、NAC等转录因子响应相对低温调控扩展蛋白EXP控制桂花花开放的分子机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
血管紧张素II在脑缺血再灌注损伤中的作用机制与新型AT1受体拮抗剂—化合物EXP-2528的保护作用研究
  • 批准号:
    30572187
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

SCH: EXP: Collaborative Research: Privacy-Preserving Framework for Publishing Electronic Healthcare Records
SCH:EXP:合作研究:发布电子医疗记录的隐私保护框架
  • 批准号:
    1836945
  • 财政年份:
    2017
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602394
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Design of a wearable biosensor system with wireless network for the remote detection of life threatening events in neonates
SCH:EXP:协作研究:设计具有无线网络的可穿戴生物传感器系统,用于远程检测新生儿危及生命的事件
  • 批准号:
    1664815
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Group-Specific Learning to Personalize Evidence-Based Medicine
SCH:EXP:协作研究:针对群体的特定学习以个性化循证医学
  • 批准号:
    1602198
  • 财政年份:
    2016
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502172
  • 财政年份:
    2015
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Preserving Privacy in Human Genomic Data
SCH:EXP:协作研究:保护人类基因组数据的隐私
  • 批准号:
    1502273
  • 财政年份:
    2015
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Cognitive Haptic Based Rehabilitation System for Patient-Centric Home
SCH:EXP:协作研究:基于认知触觉的康复系统,用于以患者为中心的家庭
  • 批准号:
    1502287
  • 财政年份:
    2015
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Cognitive Haptic Based Rehabilitation System for Patient-Centric Home
SCH:EXP:协作研究:基于认知触觉的康复系统,用于以患者为中心的家庭
  • 批准号:
    1502339
  • 财政年份:
    2015
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Exploring Sparsity and Spectral-Temporal Decomposition in Real-Time Network Modulation for Intractable Epilepsy
SCH:EXP:合作研究:探索顽固性癫痫实时网络调制中的稀疏性和频谱-时间分解
  • 批准号:
    1406447
  • 财政年份:
    2014
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Hierarchical Capacitive Sensing for Environmental Control and Physical Therapy for Patients with Paralysis
SCH:EXP:合作研究:用于瘫痪患者环境控制和物理治疗的分层电容传感
  • 批准号:
    1406626
  • 财政年份:
    2014
  • 资助金额:
    $ 47.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了