DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties

DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体

基本信息

  • 批准号:
    2323695
  • 负责人:
  • 金额:
    $ 154.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This Designing Materials to Revolutionize and Engineer our Future (DMREF) project will establish a multi-disciplinary active learning method to discover new materials chemistries for additive manufacturing (AM; or 3D printing) wherein the electrical and mechanical properties can be locally controlled. This is a multi-disciplinary approach with an integration of advanced synthesis, characterization, simulation, and data science protocols. AM has seen exponential growth in recent years. One emerging area is to use AM for functional devices. However, the current AM techniques face challenges in fabricating these devices due to the lack of multi-material capability. Digital light processing (DLP) 3D printing is a rapidly developing AM technique due to its advantage of high speed and high resolution. The research will develop advanced data-driven approaches which utilize both experimental and computational training data to address the multiple design objectives and guide successive rounds of experiments. These approaches will be used to discover new resin formulations for DLP 3D printing where the local material properties can be controlled from soft to stiff and conductive to non-conductive. The active learning method will greatly expedite the development of new materials for AM. The research will have significant societal and economic impacts serving to maintain and enhance the US leadership position in AM. The research will be disseminated to undergraduate, graduate, and high school students and involve them in research. The research will involve students from underrepresented groups and promoting divergence, equity, and inclusion in the STEM field. Discovery of new polymers for AM has been hindered by the existence of a large number of ingredient monomers, large property differences among printed polymers, and the lack of an efficient approach to rapidly select these monomers at proper ratios to make polymers with properties that can meet the application needs. Preliminary work has demonstrated the feasibility to use an active learning approach to discover new resins with different monomer compositions for targeted mechanical properties. This work has shown that it is possible to use the copolymer ink design to print a monolithic part with locally variable mechanical properties and conductivity. The research will first establish a suite of high-throughput methods for polymer property evaluation by experiments and simulations. These include rapidly synthesizing polymers composed of different monomers at different ratios, characterizing their mechanical and electrical properties, and predicting these properties using molecular dynamics simulations with classical and machine learning based force fields trained on density functional theory calculation data. Assisted by these high-throughput methods, the research will establish an advanced multi-task active learning model that uses data from molecular dynamics simulations and from a limited number of experiments to predict polymer electrical and mechanical properties. A combined iterative approach between experiments and simulations will provide insight into effects of polymer composition and structure on polymer conductivity, mechanical properties, and property gradients. Finally, the active learning model will be used to guide the selection of monomers to design and fabricate 3D functional devices.This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG) and the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计材料革新和设计我们的未来(DMREF)项目将建立一种多学科的主动学习方法,以发现用于添加剂制造(AM;或3D打印)的新材料化学,其中电气和机械性能可以在本地控制。这是一种集成了先进的合成、表征、模拟和数据科学协议的多学科方法。近年来,AM呈指数级增长。一个新兴领域是将AM用于功能设备。然而,由于缺乏多材料能力,目前的AM技术在制造这些器件方面面临着挑战。数字光处理(DLP)3D打印技术以其速度快、分辨率高等优点成为近年来发展迅速的AM技术。这项研究将开发先进的数据驱动方法,利用实验和计算训练数据来处理多个设计目标,并指导连续几轮的实验。这些方法将被用来发现用于DLP 3D打印的新树脂配方,其中本地材料的性能可以从软到硬,从导电到非导电。这种主动学习方法将极大地加快AM新材料的开发这项研究将产生重大的社会和经济影响,有助于保持和提高美国在AM的领导地位这项研究将传播给本科生、研究生和高中生,并让他们参与研究。这项研究将包括来自代表性不足群体的学生,并促进STEM领域的分歧、公平和包容性。由于存在大量的成分单体,印刷聚合物之间的性能差异很大,以及缺乏一种有效的方法来以适当的比例快速选择这些单体以制备具有满足应用需要的性能的聚合物,阻碍了AM新聚合物的发现。初步工作已经证明了使用主动学习方法来发现具有不同单体组成的新树脂以获得目标机械性能的可行性。这项工作表明,使用共聚墨水设计可以打印出具有局部可变机械性能和导电性的整体部件。这项研究将首先通过实验和模拟建立一套高通量的聚合物性能评估方法。这些措施包括快速合成由不同比例的不同单体组成的聚合物,表征其机械和电学性能,并使用基于密度泛函理论计算数据训练的基于经典和机器学习的力场的分子动力学模拟来预测这些性能。在这些高通量方法的帮助下,这项研究将建立一个先进的多任务主动学习模型,该模型使用来自分子动力学模拟和有限数量的实验的数据来预测聚合物的电学和力学性质。实验和模拟相结合的迭代方法将深入了解聚合物组成和结构对聚合物导电性、力学性能和性能梯度的影响。最后,主动学习模型将被用于指导选择单体来设计和制造3D功能设备。该项目由工程局(ENG)的土木、机械和制造创新部(CMMI)和数学和物理科学局(MPS)的材料研究部(DMR)支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hang Qi其他文献

Accurate prediction of wood moisture content using terahertz time-domain spectroscopy combined with machine learning algorithms
使用太赫兹时域光谱结合机器学习算法对木材含水量进行精确预测
  • DOI:
    10.1016/j.indcrop.2025.120771
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Min Yu;Jia Yan;Jiawei Chu;Hang Qi;Peng Xu;Shengquan Liu;Liang Zhou;Junlan Gao
  • 通讯作者:
    Junlan Gao
Synergistic modification of phycocyanin composite gel by xanthan gum and flaxseed gum and the fate during emin vitro/em digestion
黄原胶和亚麻籽胶对藻蓝蛋白复合凝胶的协同改性及其在体外消化过程中的命运
  • DOI:
    10.1016/j.foodhyd.2024.110183
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Ying Bai;Yu Liu;Tian Yao;Xu Huang;Yuze Wang;Hang Qi
  • 通讯作者:
    Hang Qi
Insights into the highly selective and efficient adsorption of Pbsup2+/sup by fish skin collagen-enabled sodium alginate-based composite gel spheres: adsorption and interference mechanisms
鱼皮胶原蛋白负载海藻酸钠基复合凝胶球对 Pb2+的高选择性和高效吸附的见解:吸附和干扰机制
  • DOI:
    10.1016/j.foodhyd.2025.111700
  • 发表时间:
    2026-02-01
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Zuomiao Yang;Yu Liu;Enze Wang;Wei Yin;Yujiao Wang;Yicheng Guo;Wentao Zhang;Hang Qi
  • 通讯作者:
    Hang Qi
Photooxidation and Antioxidant Responses in the Gut of Sea Cucumber Stichopus japonicus autolysis exposed to UVC radiation
UVC辐射下海参自溶肠道的光氧化和抗氧化反应
部位特異的変異導入によるEndo-Mの基質特異性の改変
通过定点诱变修饰 Endo-M 底物特异性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Qi;Qian Wu;Naomi A be;Shunya Saiki;Beiwei Zhu;Yoshiyuki Murata;Yoshim asa Nakamura;加藤紀彦・片山高嶺・熊田純一・松崎祐二・山本憲二
  • 通讯作者:
    加藤紀彦・片山高嶺・熊田純一・松崎祐二・山本憲二

Hang Qi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hang Qi', 18)}}的其他基金

EAGER: Collaborative Research: Origami-Based Extremely-Packed Multistable Pop-Up Design for Medical Masks
EAGER:合作研究:基于折纸的超密集多稳态弹出式医用口罩设计
  • 批准号:
    2029157
  • 财政年份:
    2020
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
NSF-AFOSR Joint Workshop on Mechanics-Based Design of Intelligent Material Systems by Multimaterial Additive Manufacturing; Melbourne, Australia; August 15, 2019
NSF-AFOSR 多材料增材制造智能材料系统基于力学设计联合研讨会;
  • 批准号:
    1922499
  • 财政年份:
    2019
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Phase I IUCRC at Georgia Institute of Technology: Center for Science of Heterogeneous Additive Printing of 3D Materials SHAP3D
佐治亚理工学院 IUCCRC 第一阶段:3D 材料异质增材打印科学中心 SHAP3D
  • 批准号:
    1822141
  • 财政年份:
    2018
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Continuing Grant
Planning I/UCRC Georgia Institute of Technology: Center for Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D)
规划 I/UCRC 佐治亚理工学院:3D 材料异质增材打印科学中心 (SHAP3D)
  • 批准号:
    1650461
  • 财政年份:
    2017
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Design of Active Composites Enabled by 3D Printing
合作研究:通过 3D 打印实现活性复合材料的设计
  • 批准号:
    1462894
  • 财政年份:
    2015
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Mechanics in Photopolymerization Based Additive Manufacturing
基于光聚合的增材制造力学
  • 批准号:
    1462895
  • 财政年份:
    2015
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
EFRI-ODISSEI: Photo-Origami
EFRI-ODISSEI:照片折纸
  • 批准号:
    1435452
  • 财政年份:
    2014
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Laminated Elastomeric Composites with Anisotropic Shape Memory
DMREF/合作研究:具有各向异性形状记忆的层压弹性复合材料
  • 批准号:
    1334637
  • 财政年份:
    2013
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Healing and Reprocessing of Epoxy with Dynamic Covalent Bonds and Composites
动态共价键环氧树脂和复合材料的修复和再加工
  • 批准号:
    1404627
  • 财政年份:
    2013
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Healing and Reprocessing of Epoxy with Dynamic Covalent Bonds and Composites
动态共价键环氧树脂和复合材料的修复和再加工
  • 批准号:
    1334676
  • 财政年份:
    2013
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 154.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了