Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
基本信息
- 批准号:2323699
- 负责人:
- 金额:$ 62.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project develops a design methodology for supported single-atom catalysts (SACs) – an emerging class of supported single metal-atom catalysts that offer exciting and emergent properties that can revolutionize many industrial applications. The realization of their full potential is hindered by limited understanding of how to control their stability and catalytic properties within the complex material design space extending across the properties of the metal atoms and supporting material, together with interactions between the two. To overcome this challenge, the project embraces a highly-integrated, computational-experimental methodology using machine learning techniques (ML) to leverage the support material as a ligand to regulate the geometric and electronic properties of the metal site and improve its stability. The model predictions will guide the synthesis, characterization and catalytic measurements to enable selective bond activation. The proposed methodology can profoundly impact the discovery of complex materials for challenging chemical reactions. The design of stable, active, and selective catalysts, while maximizing the metal utilization at the single-atom level, can significantly reduce capital costs and energy consumption, leading to lower CO2 emissions, reduced production of harmful byproducts, and more responsible utilization of hydrocarbon feedstocks. The interdisciplinary nature of this research and the integration of research and education plans between the three institutions will lead to a cadre of students obtaining a unique educational experience in heterogeneous catalysis, multiscale modeling, and advanced lab- and synchrotron-based characterization techniques. Furthermore, the project will develop educational materials for outreach programs targeting K-12 students with focused efforts to increase the participation of underrepresented students in STEM fields.The project incorporates a conceptual framework centered on artificial intelligence (AI) and multiscale modeling-based methodologies to build guiding principles that can be leveraged to predict highly active, stable, and selective metal-support compositions. The model predictions will guide the synthesis of single-metal atoms supported on novel, high-surface-area unconventional support materials (perovskites and spinels) by atomic layer deposition, followed by detailed characterization of their properties, catalyst evaluation, and model assessment and refinement (thus enabling an efficient catalyst discovery/design loop). By uncovering physics-inspired descriptors and harnessing the capabilities of machine learning, the project aims to predict how the surface composition of the oxide support and the local cation environment at the metal site influence stability, activity, and selectivity. The developed methods and models will be evaluated with respect to two complex industrially relevant reactions: 1) water-gas shift, and 2) hydrodeoxygenation (HDO) of cresol to toluene. The former focuses primarily on maximizing reaction rate, while the latter addresses both activity and selectivity challenges. The outcome of this research will serve as a foundational methodology for designing new materials in silico.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了一种支持单原子催化剂(SAC)的设计方法-一种新兴的支持单金属原子催化剂,提供了令人兴奋的和新兴的特性,可以彻底改变许多工业应用。它们的全部潜力的实现受到如何在复杂材料设计空间内控制其稳定性和催化性能的有限理解的阻碍,该复杂材料设计空间跨越金属原子和支撑材料的性质,以及两者之间的相互作用。为了克服这一挑战,该项目采用了高度集成的计算实验方法,使用机器学习技术(ML)来利用支撑材料作为配体来调节金属位点的几何和电子性质并提高其稳定性。模型预测将指导合成,表征和催化测量,使选择性键活化。所提出的方法可以深刻地影响复杂材料的发现,以挑战化学反应。设计稳定、活性和选择性的催化剂,同时在单原子水平上最大化金属利用率,可以显著降低资本成本和能耗,从而降低CO2排放,减少有害副产物的产生,并更负责任地利用烃原料。这项研究的跨学科性质和三个机构之间的研究和教育计划的整合将导致学生干部获得非均相催化,多尺度建模,先进的实验室和基于同步加速器的表征技术的独特的教育经验。 此外,该项目还将为面向K-12学生的外展项目开发教育材料,重点关注提高STEM领域代表性不足的学生的参与度。该项目将以人工智能(AI)为中心的概念框架和基于多尺度建模的方法学,以构建可用于预测高活性、稳定性和选择性金属载体组合物的指导原则。模型预测将指导通过原子层沉积在新型高表面积非常规载体材料(钙钛矿和尖晶石)上支持的单金属原子的合成,然后对其性能进行详细表征,催化剂评估以及模型评估和改进(从而实现有效的催化剂发现/设计循环)。 通过揭示物理学启发的描述符和利用机器学习的能力,该项目旨在预测氧化物载体的表面组成和金属位点的局部阳离子环境如何影响稳定性,活性和选择性。开发的方法和模型将评估两个复杂的工业相关的反应:1)水煤气变换,和2)加氢脱氧(HDO)的甲酚甲苯。前者主要关注最大化反应速率,而后者则解决活性和选择性挑战。 这项研究的成果将作为设计新材料的基本方法。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ayman Karim其他文献
Wall coating behavior of catalyst slurries in non-porous ceramic microstructures
- DOI:
10.1016/j.ces.2006.04.029 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Travis Conant;Ayman Karim;Stephen Rogers;Stephen Samms;Gerard Randolph;Abhaya Datye - 通讯作者:
Abhaya Datye
Ayman Karim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ayman Karim', 18)}}的其他基金
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308630 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: Structure, Dynamics, and Catalysis with Dilute Bimetallic and Single Atom Alloy Nanoparticles
合作研究:稀双金属和单原子合金纳米粒子的结构、动力学和催化作用
- 批准号:
2300021 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Atomic Scale Design of Nanostructures Using In Situ Characterization-Based Kinetic Models
使用基于原位表征的动力学模型进行纳米结构的原子尺度设计
- 批准号:
1507370 - 财政年份:2015
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 62.52万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 62.52万 - 项目类别:
Standard Grant