SAI: Large-scale Planning for Electric Vehicle Public Charging Infrastructure

SAI:大规模规划电动汽车公共充电基础设施

基本信息

  • 批准号:
    2323732
  • 负责人:
  • 金额:
    $ 74.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Strengthening American Infrastructure (SAI) is an NSF Program seeking to stimulate human-centered fundamental and potentially transformative research that strengthens America’s infrastructure. Effective infrastructure provides a strong foundation for socioeconomic vitality and broad quality of life improvement. Strong, reliable, and effective infrastructure spurs private-sector innovation, grows the economy, creates jobs, makes public-sector service provision more efficient, strengthens communities, promotes equal opportunity, protects the natural environment, enhances national security, and fuels American leadership. To achieve these goals requires expertise from across the science and engineering disciplines. SAI focuses on how knowledge of human reasoning and decision-making, governance, and social and cultural processes enables the building and maintenance of effective infrastructure that improves lives and society and builds on advances in technology and engineering.The United States is investing heavily in its electric vehicle infrastructure. Public charging stations represent an important part of that infrastructure. Achieving national goals will require the addition of 500,000 new public charging stations by 2030. This expansion is expected to yield significant economic benefits and to promote the adoption of electric vehicles. It will also reshape the way Americans travel and access opportunities. To fully leverage this investment requires attention to human and social considerations, and to anticipate unintended negative consequences. This SAI project develops a human-centered planning framework for public charging stations. It integrates human cognitive processes and social impacts into engineering models, with the goal of ensuring long-term community benefits. The research contributes to sustainable and fair nationwide public charging networks by gaining a better understanding of how people make choices about public charging station use and by considering the equitable distribution of those stations across the country.Bringing a convergence of expertise from psychology, sociology, and engineering, this project creates an integrated public charging station framework. Using survey data and laboratory experiments, a cognitive framework is developed to account for choices in the use of public charging stations. Equity and community impacts are investigated for both electric vehicle and non-electric vehicle users. Public charging station deployment decisions are modeled, and the outcomes are validated using an agent-based simulator with realistic social cognition dynamics and real-world data. By using an integrative and interdisciplinary research approach, this project establishes new theories and models of social decision-making for public charging station choices. It promotes new human-centered thinking of deploying public charging infrastructure, supporting the achievement of national electric vehicle goals.This award is supported by the Directorate for Social, Behavioral, and Economic (SBE) Sciences, the Directorate for Engineering, and the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加强美国基础设施(SAI)是NSF的一项计划,旨在促进以人为本的基础和潜在的变革性研究,以加强美国的基础设施。有效的基础设施为社会经济活力和广泛改善生活质量奠定了坚实的基础。强大、可靠和有效的基础设施刺激私营部门创新,促进经济增长,创造就业机会,提高公共部门服务提供的效率,加强社区建设,促进机会平等,保护自然环境,增强国家安全,并推动美国的领导地位。为了实现这些目标,需要来自科学和工程学科的专业知识。SAI专注于人类推理和决策,治理以及社会和文化过程的知识如何能够建立和维护有效的基础设施,改善生活和社会,并建立在技术和工程的进步之上。公共充电站是该基础设施的重要组成部分。实现国家目标需要到2030年增加50万个新的公共充电站。这一扩张预计将产生巨大的经济效益,并促进电动汽车的采用。它还将重塑美国人旅行和获得机会的方式。为了充分利用这一投资,需要注意人和社会因素,并预测意外的负面后果。SAI项目为公共充电站开发了一个以人为本的规划框架。它将人类认知过程和社会影响整合到工程模型中,旨在确保长期的社区利益。该研究通过更好地了解人们如何选择公共充电站的使用,并考虑这些站在全国范围内的公平分布,为全国范围内可持续和公平的公共充电网络做出贡献。该项目汇集了心理学,社会学和工程学的专业知识,创建了一个综合的公共充电站框架。使用调查数据和实验室实验,认知框架的开发占在使用公共充电站的选择。公平和社区的影响进行了调查,为电动汽车和非电动汽车用户。 公共充电站的部署决策进行建模,并使用基于代理的模拟器与现实的社会认知动态和现实世界的数据进行验证的结果。本项目采用跨学科的综合研究方法,建立了公共充电站选择的社会决策新理论和模型。它促进了以人为本的新思想,部署公共充电基础设施,支持实现国家电动汽车目标。该奖项由社会,行为和经济(SBE)科学理事会,工程理事会,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding the Opportunity-centric Accessibility for Public Charging Infrastructure: A Case Study of 10 Metro Areas in the U.S.
了解以机会为中心的公共充电基础设施可达性:美国 10 个都会区的案例研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinwu Qian其他文献

Modeling the spread of infectious disease in urban areas with travel contagion
通过旅行传染模拟城市地区传染病的传播
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinwu Qian;S. Ukkusuri
  • 通讯作者:
    S. Ukkusuri
Moderating effects of policy measures on intention to adopt autonomous vehicles: Evidence from China
政策措施对采用自动驾驶汽车意愿的调节作用:来自中国的证据
  • DOI:
    10.1016/j.tbs.2024.100921
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Tianpei Tang;Yuntao Guo;Dustin J. Souders;Xinghua Li;Miaomiao Yang;Xunqian Xu;Xinwu Qian
  • 通讯作者:
    Xinwu Qian
Identifying the Temporal Characteristics of Intra-City Movement Using Taxi Geo-Location Data
使用出租车地理位置数据识别城市内移动的时间特征
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenbo Zhang;Xinwu Qian;S. Ukkusuri
  • 通讯作者:
    S. Ukkusuri
Solving the equity-aware dial-a-ride problem using an exact branch-cut-and-price algorithm
运用精确的分支切割定价算法求解公平感知的电话叫车问题
Impact of COVID-19 on paratransit operators and riders: A case study of central Alabama
COVID-19 对辅助公交运营商和乘客的影响:阿拉巴马州中部的案例研究

Xinwu Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Fellowship
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 74.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了