Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
基本信息
- 批准号:2324174
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description:The world has seen an enormous increase in global connectivity, information processing, and information storage driven by advances in technologies that rely largely on traditional semiconductors. Their underlying material platforms, however, are facing enormous challenges. A future generation of electronic devices can be established using materials which exist in multiple electronic states. Materials and devices that can be switched from an insulator to a metal by an external trigger would revitalize the U.S. semiconductor ecosystem, providing new paths to low-power computing systems and integration into systems for 6G and beyond applications. The project goal is to design and discover materials exhibiting such insulator-to-metal transitions (IMT) that enable room-temperature operation and display large changes in electrical resistivity. The research team, which comprises interdisciplinary expertise in computational and experimental materials physics, data science, and device engineering, aims to enable a culture shift in materials research, development, and deployment through training a well-equipped and diverse workforce with proficiencies in data-driven discovery of advanced materials. Leveraging Materials Genome Initiative principles, the team will deliver a tightly integrated codesign methodology to facilitate modeling and synthesis of new IMT materials with superior properties, and ultimately guide the design towards record-setting device performance to strengthen American leadership in future computing, storage and communication technologies and industries. Technical Description:The goal of the Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT) project is to implement an accelerated discovery and codesign engine for efficient deployment of insulator-metal transition (IMT) materials traditionally marred by sparse prior data and system-level constraints. Achieving this goal requires moving beyond conventional, linear approaches to materials discovery, transforming them into a cyclic and iterative process. The project formulates new computational approaches that fuse computational data with high-throughput materials synthesis and characterization data to overcome key challenges of (i) Materials Discovery from Sparse & Expensive Data, (ii) Efficient Decoding of High-Dimensional Experimental Data, and (iii) Property-Performance Mismatch upon Integration. Their confluence hinders the advancement of novel material platforms for future microelectronic and wireless communication technologies. The project goal will be executed by creating integrated protocols that transform the standard sequential discovery steps (hypothesis generation, synthesis, characterization) into closed-loops fashioned to overcome these challenges: (1) AI-Aided Virtual Screening and Adaptive Discovery, (2) Accelerated Synthesis and Characterization Analytics, and (3) Materials Integration, Device Fabrication, and Codesign. Success with this framework will allow for the realization of material objectives within device constraints and deliver the following outcomes: (1) new classes of single and two-phase IMT materials (2) distributed in open-access databases, (3) theories of IMT behavior, (4) novel IMT thin film synthesis methods, (5) contactless characterization methods to improve throughput, (6) adaptive learning methods to achieve codesigned materials and devices, and (7) quantitative understanding of device performance to benefit future scalability and manufacturing with industrial partners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:全球连通性,信息处理和信息存储的巨大提高,这是由于很大程度上依赖传统半导体的技术的进步所驱动的。但是,他们的基本材料平台面临着巨大的挑战。可以使用在多种电子状态中存在的材料来建立未来的电子设备。可以通过外部扳机从绝缘体转换为金属的材料和设备将使美国半导体生态系统振兴,从而为低功率计算系统提供新的途径,并将其集成到6G和超越应用程序的系统中。项目目标是设计和发现展示这种绝缘体到金属过渡(IMT)的材料,以实现室温操作并显示出电阻率的巨大变化。该研究团队包括计算和实验材料物理,数据科学和设备工程领域的跨学科专业知识,旨在通过培训良好的和多样化的劳动力,并在数据驱动的高级材料发现方面进行培训,从而使材料研究,开发和部署的文化转变。该团队利用材料基因组计划原则,将提供紧密整合的代码方法,以促进具有出色属性的新IMT材料的建模和合成,并最终指导设计以创纪录的设备性能,以增强美国在未来的计算,存储和通信技术和行业中的美国领导力。技术描述:电子相变的加速设计,发现和部署的目的是实施加速的发现和代码设计引擎,以有效地部署绝缘体 - 金属过渡(IMT)材料,传统上稀疏的先前数据和系统级别的约束传统上破坏了材料。实现这一目标需要超越传统的线性方法来发现材料发现,从而将其转变为环状和迭代过程。该项目制定了新的计算方法,这些方法将计算数据与高通量材料合成和表征数据融合在一起,以克服(i)从稀疏和昂贵数据中发现的材料发现的关键挑战,(ii)高维实验数据的有效解码,以及(iii)绩效 - 绩效 - 绩效 - 绩效不匹配。它们的汇合阻碍了新型材料平台的发展,以实现未来的微电子和无线通信技术。将通过创建集成协议来执行项目目标,该协议将标准顺序发现步骤(假设生成,合成,表征)转换为构成这些挑战的闭环:(1)AI-AIDED虚拟筛选和适应性发现,(2)加速合成和特征分析和(3)材料集成,设备和编码,和代码和代码和代码和代码和代码。 Success with this framework will allow for the realization of material objectives within device constraints and deliver the following outcomes: (1) new classes of single and two-phase IMT materials (2) distributed in open-access databases, (3) theories of IMT behavior, (4) novel IMT thin film synthesis methods, (5) contactless characterization methods to improve throughput, (6) adaptive learning methods to achieve codesigned materials and devices, and (7)对设备绩效的定量理解,以使未来的可扩展性和与工业合作伙伴的制造业有利。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Divine Kumah其他文献
Divine Kumah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Divine Kumah', 18)}}的其他基金
CAREER: Confining Magnetism to Two-Dimensions in Transition Metal Oxide Atomic Layers
职业:将磁性限制在过渡金属氧化物原子层的二维范围内
- 批准号:
1751455 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant