CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning

职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习

基本信息

  • 批准号:
    2324651
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

Nontechnical:Development of integrated circuits was a milestone in the golden age of electronics. That feat will be replicated by this project through the development of both artificial neurons and synapses on the same materials platform. This will allow us to create systems that can emulate the capacity and speed of the human brain for pattern matching, beating current systems that are bulkier, slower and more power hungry. This will revolutionize the field of machine learning and create devices where the machine-learning hardware is close to the sensor, giving rise to systems that are currently impossible to create. Neuromorphic circuits based on these devices include smart wearables that can monitor health biometrics and issue first level triage for elderly people alone at home. They can improve autonomous driving for terrestrial vehicles. These circuits will be especially useful for spacecrafts and space rovers because these ultra-light circuits will not be a bottleneck to the rocket's payload. Fast pattern recognition abilities through these deep neural networks will enhance speech recognition in portable electronics and improve traffic analysis and control systems. In collaboration with Central Florida STEM Alliance (CFSA) program, underrepresented minorities from local community colleges will be provided hands-on research opportunities in the lab of the PI. Regular video lab tours to underrepresented K-12 students and week-long lab experience for two selected K-12 students annually will foster their interest in STEM education. Banners highlighting key aspects of this research will be displayed at the Orlando Science Center for general public awareness. These efforts will lead the electronics industry to invest in Florida through the Florida High Technology Corridor, creating opportunities for engineers in the state.Technical:The objective of this proposal is to develop scalable monolithically integrated artificial neurons and synapses using all-two-dimensional (all-2D) graphene/MoS2/graphene memristive heterostructures for neuromorphic computing. In these heterostructures graphene acts as the electrodes and MoS2 as the switching medium. Volatile resistive switching observed in vertically-standing sheets of MoS2 will be harnessed to realize integrate-and-fire (IF) neurons, and the stochastic nature of their firing will be investigated. Artificial synapses with sub-picojoules of energy requirement per switching event will be developed using the multi-level non-volatile switching in horizontal MoS2 sheets. The mechanisms behind this intriguing phenomenon of volatile resistive switching in vertical MoS2 sheets versus non-volatile switching in horizontal MoS2 sheets will be investigated using electrical and materials characterization techniques. The necessity of graphene electrodes in the heterostructure will be justified. Through engineering of the heterostructure design, the performance of the artificial neurons and synapses will be optimized to create stochastic resistive-switching IF neurons and low-power synapses which will be integrated monolithically. The advantage of mechanical flexibility of graphene and MoS2 will be exploited to fabricate and test these neuromorphic devices on a flexible platform. The proposed research program aims at bringing together two emerging research areas cohesively into a cutting edge technology. While 2D materials have immense prospects in succeeding silicon within the von Neumann paradigm, non-von Neumann approaches have always dealt with conventional materials. This transformative research would bring together the best of both these worlds. The use of large-area 2D materials will enhance the practical realization of these exotic devices. Ultra-low power operation of graphene/MoS2/graphene artificial synapses with sparse firing graphene/MoS2/graphene artificial neurons will provide for energy-efficient neuromorphic computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:整合电路的发展是电子产品黄金时代的一个里程碑。该项目将通过在同一材料平台上开发人造神经元和突触来复制这一壮举。 这将使我们能够创建可以模拟人脑的容量和速度以进行模式匹配的系统,击败当前的系统,这些系统较大,较慢且渴望更大。这将彻底改变机器学习的领域,并创建机器学习硬件接近传感器的设备,从而产生当前无法创建的系统。基于这些设备的神经形态电路包括可以监视健康生物识别技术的智能可穿戴设备,并为单独在家中的老年人发出第一级分类。他们可以改善陆地车辆的自动驾驶。这些电路对于航天器和太空漫游车特别有用,因为这些超光电电路不会成为火箭有效载荷的瓶颈。通过这些深度神经网络通过这些深层神经网络的快速模式识别能力将增强便携式电子产品中的语音识别,并改善交通分析和控制系统。与佛罗里达州中部STEM联盟(CFSA)计划合作,将在PI实验室提供当地社区学院的代表性不足的少数群体。定期对代表性不足的K-12学生和为期一周的两名精选K-12学生的实验室实验室巡回演出将促进他们对STEM教育的兴趣。强调这项研究的关键方面的横幅将在奥兰多科学中心公众意识中心展出。 These efforts will lead the electronics industry to invest in Florida through the Florida High Technology Corridor, creating opportunities for engineers in the state.Technical:The objective of this proposal is to develop scalable monolithically integrated artificial neurons and synapses using all-two-dimensional (all-2D) graphene/MoS2/graphene memristive heterostructures for neuromorphic computing.在这些异质结构中,石墨烯充当电极,MOS2作为开关介质。在MOS2的垂直固定纸上观察到的挥发性电阻转换将被利用,以实现整合和开火(如果)神经元,并将研究其射击的随机性质。通过水平MOS2表中的多级非挥发性开关,将开发具有每个开关事件的能量要求的人工突触。将使用电气和材料表征技术研究这种有趣的垂直MOS2板与非挥发性切换的挥发性电阻切换与非挥发性开关的有趣现象背后的机制。异质结构中石墨烯电极的必要性是合理的。通过异质结构设计的工程,如果神经元和低功率突触将单一集成,则将优化人造神经元和突触的性能,以创建随机的电阻转换。石墨烯和MOS2机械灵活性的优势将被利用,以在柔性平台上制造和测试这些神经形态设备。拟议的研究计划旨在将两个新兴的研究领域凝聚到尖端技术中。尽管2D材料在冯·诺伊曼(Von Neumann)范式内取得成功的硅具有巨大的前景,但非冯·诺伊曼(Neumann)的方法始终处理传统材料。这项变革性的研究将使这两个世界中最好。大区域2D材料的使用将增强这些外来设备的实际实现。石墨烯/MOS2/石墨烯的超低功率操作,具有稀疏的点火石墨烯/MOS2/石墨烯人工神经元的人造突触将提供能节能的神经形态计算。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力功能和广泛影响的评估来评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tania Roy其他文献

Low Temperature Anomalies of Resistance in Titanium-Cleaned Single Layer Graphene
钛清洁单层石墨烯的低温电阻异常
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Fujimoto;Corey Joiner;Yuxuan Jiang;Tania Roy;Zohreh Razavi Hesabi;D. Terasawa;A. Fukuda;Zhigang Jiang;Eric Vogel
  • 通讯作者:
    Eric Vogel
Information Content of a Phylogenetic Tree in a Data Matrix
数据矩阵中系统发育树的信息内容
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tania Roy;H. Fushing;Xunde Li;B. McCowan;R. Atwill
  • 通讯作者:
    R. Atwill
Alternate Pathways to Careers in Computing: Recruiting and Retaining Women Students
计算机职业的替代途径:招募和留住女学生
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Daily;J. Gilbert;W. Eugene;Christina Gardner;K. McMullen;Phillip Hall;S. Remy;D. Woodard;Tania Roy
  • 通讯作者:
    Tania Roy
A 2D route to 3D computer chips.
通往 3D 计算机芯片的 2D 路线。
  • DOI:
    10.1038/d41586-023-03992-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Tania Roy
  • 通讯作者:
    Tania Roy
SecondLook: A Prototype Mobile Phone Intervention for Digital Dating Abuse
SecondLook:针对数字约会滥用的手机干预原型
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tania Roy
  • 通讯作者:
    Tania Roy

Tania Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tania Roy', 18)}}的其他基金

FuSe: Co-designed Systems for In-sensor Processing with Sustainable Nanomaterials (COSMIC)
FuSe:利用可持续纳米材料共同设计的传感器内处理系统 (COSMIC)
  • 批准号:
    2328712
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    1845331
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
  • 批准号:
    62335019
  • 批准年份:
    2023
  • 资助金额:
    225.00 万元
  • 项目类别:
    重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Scalable atom-thin materials for monolithic electronics & optoelectronics
用于单片电子器件的可扩展原子薄材料
  • 批准号:
    DP220100020
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    1845331
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
A Scalable, Monolithic, DOI, TOF, MR compatible, PET Detector
可扩展、单片、DOI、TOF、MR 兼容的 PET 探测器
  • 批准号:
    7730977
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
A Scalable, Monolithic, DOI, TOF, MR compatible, PET Detector
可扩展、单片、DOI、TOF、MR 兼容的 PET 探测器
  • 批准号:
    8295983
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
A Scalable, Monolithic, DOI, TOF, MR compatible, PET Detector
可扩展、单片、DOI、TOF、MR 兼容的 PET 探测器
  • 批准号:
    8192917
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了