Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
基本信息
- 批准号:2326780
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of quantum information science and technology hinges on unique quantum mechanical phenomena such as entanglement to enable unprecedented capabilities for communication, sensing, and computing. Among these technologies, quantum communication is foreseen to create broad near-term impacts as seen in recent quantum testbeds, teleportation, and entanglement distribution experiments. It is also envisaged to underpin future's fully connected quantum computers, quantum sensors, and a global secure communication network. Mainstream quantum communication platforms, however, rely on expensive, unscalable bulk optics components that impede their widespread deployment. While recent work on integrated quantum communication devices opens a new route to the development of compact quantum-communication systems, an integrated quantum photonics platform encompassing multiple, functional modules on a single chip to generate and process large-scale entanglement remains elusive. This collaborative project will develop a room-temperature integrated quantum photonics platform that incorporates quantum communication modules for scalable generation, processing, multicasting, and detection of large-scale multipartite entanglement in a quantum communication network. This project will leverage the nanofabrication and testing expertise at UCLA and the Interdisciplinary Quantum Information Research and Engineering (INQUIRE) testbed at the University of Arizona (UA) to demonstrate the capability of utilizing a highly compact and mass producible integrated platform to generate, multicast, and detect large-scale entanglement in a real-world setting. The outcome of the project will lay the foundation for future's quantum internet comprised of compact devices linked by large-scale multipartite entanglement. This project will educate and train the next-generation workforce for quantum information science and technology. Specifically, undergraduate and graduate students will grasp essential knowledge and expertise of nanophotonics and quantum information science and technology. They will gain hands-on experience while undertaking research in the INQUIRE testbed. This project will also provide opportunities for various industrial partners to be exposed to state-of-the-art tools grown out of nanophotonics and quantum information science and technology.Technical: The team will follow a system-level design approach for the integrated quantum photonics platform. The project will advance knowledge through a new quantum encoding-and-decoding paradigm that will be seamlessly incorporated into a physical architecture to offer intrinsic protection against loss. The physical architecture will consist of programmable quantum sources, processing units, and receivers using the silicon nitride material system that offer dramatic functionalities. Through ��(3 four-wave mixing in microring resonators and Mach-Zehnder interferometers, the silicon nitride chipset section will produce and process quantum signals with high fidelity and low loss. The silicon nitride section will also provide a classical frequency comb to serve as the pump for the microring resonators and phase references for the Mach-Zehnder interferometers. Programming of the quantum sources, processing units, and receivers will be by modulating the classical comb spectral lines in an integrated hybrid silicon section. In our frequency comb cluster system, the quantum signals will be immune to the programming-induced loss and disturbance. The integrated quantum photonics platform will be programmed to support two system-level quantum communication implementations: 1) a high-rate secure communication system based on quantum illumination; and 2) an entanglement multicasting and purification demonstration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学与技术领域依赖于纠缠等独特的量子力学现象,使通信、传感和计算具有前所未有的能力。在这些技术中,量子通信预计将产生广泛的近期影响,如最近的量子试验台、隐形传态和纠缠分布实验。它还被设想为未来完全连接的量子计算机、量子传感器和全球安全通信网络的基础。然而,主流的量子通信平台依赖于昂贵的、不可扩展的大宗光学组件,这阻碍了它们的广泛部署。虽然最近在集成量子通信设备方面的工作为开发紧凑型量子通信系统开辟了一条新的途径,但在单个芯片上包含多个功能模块以产生和处理大规模纠缠的集成量子光子学平台仍然难以实现。这一合作项目将开发一个室温集成量子光子学平台,该平台结合了量子通信模块,用于可扩展地产生、处理、组播和检测量子通信网络中的大规模多方纠缠。该项目将利用加州大学洛杉矶分校(UCLA)的纳米制造和测试专业知识以及亚利桑那大学(UA)的跨学科量子信息研究和工程(QUIRE)试验台,展示在现实世界中利用高度紧凑和可大规模生产的集成平台来生成、多播和检测大规模纠缠的能力。该项目的成果将为未来由大规模多方纠缠连接的紧凑型设备组成的量子互联网奠定基础。该项目将教育和培训量子信息科学和技术的下一代劳动力。具体来说,本科生和研究生将掌握纳米光子学和量子信息科学与技术的基本知识和专业知识。他们将在调查试验台进行研究的同时获得实践经验。该项目还将为各种产业合作伙伴提供机会,让他们接触到由纳米光子学和量子信息科学技术发展而来的最先进工具。技术:该团队将遵循集成量子光子学平台的系统级设计方法。该项目将通过一种新的量子编码和解码范例来促进知识的发展,这种范例将无缝地整合到物理架构中,以提供内在的防丢失保护。物理架构将由可编程的量子源、处理单元和接收器组成,使用氮化硅材料系统,提供惊人的功能。通过微环谐振器和马赫-曾德尔干涉仪中的四波混频,氮化硅芯片组部分将产生和处理高保真、低损耗的量子信号。氮化硅部分还将提供一个经典的频率梳,作为微环谐振器的泵浦和马赫-曾德尔干涉仪的相位参考。量子源、处理单元和接收器的编程将通过调制集成混合硅段中的经典梳状谱线来实现。在我们的频率梳集群系统中,量子信号将不会受到编程引起的损耗和干扰的影响。集成量子光子学平台将被编程为支持两种系统级量子通信实现:1)基于量子照明的高速保密通信系统;以及2)纠缠多播和净化演示。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entanglement-enhanced dual-comb spectroscopy
- DOI:10.1038/s41534-023-00758-w
- 发表时间:2023-04
- 期刊:
- 影响因子:7.6
- 作者:Haowei Shi;Zaijun Chen;S. Fraser;Mengjie Yu;Zheshen Zhang;Quntao Zhuang
- 通讯作者:Haowei Shi;Zaijun Chen;S. Fraser;Mengjie Yu;Zheshen Zhang;Quntao Zhuang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheshen Zhang其他文献
Frequency-Multiplexed Rate-Adaptive Quantum Key Distribution with High-Dimensional Encoding
具有高维编码的频率复用速率自适应量子密钥分配
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Sarihan;Kai;Xiang Cheng;Y. Lee;Changchen Chen;Tian Zhong;Hongchao Zhou;Zheshen Zhang;F. Wong;J. Shapiro;C. Wong - 通讯作者:
C. Wong
Entanglement's benefit survives an entanglement-breaking channel.
纠缠的好处在纠缠破坏通道中仍然存在。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:8.6
- 作者:
Zheshen Zhang;M. Tengner;Tian Zhong;Franco N. C. Wong;Jeffrey H. Shapiro - 通讯作者:
Jeffrey H. Shapiro
High Q‐Factor Polymer Microring Resonators Realized by Versatile Damascene Soft Nanoimprinting Lithography
通过多功能镶嵌软纳米压印光刻实现高 Q 因子聚合物微环谐振器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:19
- 作者:
Wei‐Kuan Lin;Shuai Liu;Sungho Lee;Zheshen Zhang;Xueding Wang;Guan Xu;L. J. Guo - 通讯作者:
L. J. Guo
Indistinguishable Photon Source in the 1550-nm Band Optimized by Machine Learning
通过机器学习优化的 1550 nm 波段中难以区分的光子源
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chaohan Cui;Yi Xia;S. Guha;N. Peyghambarian;Zheshen Zhang - 通讯作者:
Zheshen Zhang
Experimental Demonstration of an Entangled Radiofrequency-Photonic Sensor Network
纠缠射频光子传感器网络的实验演示
- DOI:
10.1364/cleo_qels.2020.fm1c.4 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yi Xia;Wei Li;William Clark;Darlene Hart;Quntao Zhuang;Zheshen Zhang - 通讯作者:
Zheshen Zhang
Zheshen Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheshen Zhang', 18)}}的其他基金
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
- 批准号:
2317471 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
- 批准号:
2144057 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
C: Quantum-Enhanced Inertial Measurement Unit (QEIMU)
C:量子增强惯性测量单元(QEIMU)
- 批准号:
2330310 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
C: Quantum-Enhanced Inertial Measurement Unit (QEIMU)
C:量子增强惯性测量单元(QEIMU)
- 批准号:
2134830 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator-Track C: Quantum-Interconnected Optomechanical Transducers for Entanglement-Enhanced Force and Inertial Sensing
NSF 融合加速器 - 轨道 C:用于纠缠增强力和惯性传感的量子互连光机械传感器
- 批准号:
2040575 - 财政年份:2020
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
- 批准号:
1920742 - 财政年份:2019
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
MRI: Development of Integrated Multi-Access Entangled-Photon Sources and Single-Photon Detector Array Instrument for Interdisciplinary Quantum Information Research
MRI:开发用于跨学科量子信息研究的集成多路纠缠光子源和单光子探测器阵列仪器
- 批准号:
1828132 - 财政年份:2018
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
- 批准号:
2247722 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
- 批准号:
2425711 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
- 批准号:
2335910 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
- 批准号:
2335909 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
- 批准号:
2247721 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Foundations of programmable living materials through synthetic biofilm engineering and quantitative computational modeling
合作研究:通过合成生物膜工程和定量计算建模为可编程生物材料奠定基础
- 批准号:
2214021 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Next G Millimeter-Wave Communication in Programmable RF Environments with Reconfigurable Intelligent Surface (SECURIS)
协作研究:SaTC:核心:中:使用可重构智能表面 (SECURIS) 确保可编程射频环境中的下一代毫米波通信
- 批准号:
2318798 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
- 批准号:
2335908 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
- 批准号:
2343964 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Next G Millimeter-Wave Communication in Programmable RF Environments with Reconfigurable Intelligent Surface (SECURIS)
协作研究:SaTC:核心:中:使用可重构智能表面 (SECURIS) 确保可编程射频环境中的下一代毫米波通信
- 批准号:
2318796 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant