Fine tuning of structural and physical properties of transition metal halides by electrochemical intercalation
通过电化学插层微调过渡金属卤化物的结构和物理性质
基本信息
- 批准号:2326843
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARY Intercalation chemistry, the process of ions moving in and out of a materials structure, lies at the center of how commercial Li-ion batteries work. The concept also is at the core of emerging technologies, including electrochromics, desalination, thermal switching and resistance switching materials. Regarding battery technology, oxide materials have been the intercalation materials of choice for a long time. Nevertheless, they suffer from degradations associated with ion intercalation that slowly deteriorate battery performance upon prolonged charge and discharge of the battery which limits the battery’s lifetime. For this project, which is supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, a new class of intercalation materials using chloride atoms, in place of oxygen, in the host structure, is synthetized. The reversibility of ions intercalation in halide materials is studied and compared with that in oxide materials, drawing structure-property relationship for this novel class of intercalation materials. The project provides new avenues to design more robust intercalation materials for Li-ion batteries. Additionally, outreach activities are organized as part of this project to engage with underserved communities, and educational opportunities are provided for undergraduate students which has the potential to develop further the US workforce. PART 2: TECHNICAL SUMMARY The objective of this research, which is supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, is to reveal the factors governing the electrochemical intercalation of alkali cations into transition metal halides, such that a future generation of Li- or Na-ion battery technologies can be developed. To this end, the principal investigator and his research group at Boston College carry out an experimental study combining the synthesis of novel lithium- or sodium-containing transition metal halides with measurements of the physical properties that govern their electrochemical (de)intercalation. The central hypothesis guiding this work is that layered halides can offer a fast alkali cation (de)intercalation while avoiding damaging structural transitions that plague the extraction of lithium or sodium from oxides at high potential. By mapping the chemical landscape that governs the redox chemistry of layered halides, this work seeks to lay the fundamental understanding to how ligand polarizability, size and electronegativity modify the redox properties of layered materials. Novel metastable polymorphs are synthetized and, by comparing their structural features and electrochemical response with that of more thermodynamically stable ones, competition existing between intra- and inter-layer interactions for intercalated layered halides can be revealed. Combined with electrical and magnetic measurements, the results are integrated to find out how cations intercalation impart the competition existing between inter- and intra-layer interactions in transition metal layered halides. Methodologies and knowledge gathered in this work serves to identify promising intercalation materials with tunable electronic properties. Collectively, this work advances redox chemistry of transition metal halides for rechargeable batteries and paves the way towards the development of new halide compounds. The research efforts are complemented by participating to outreach program serving underrepresented and underserved students in grade 8-12, and by engaging undergraduate student researchers in the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分: 插层化学,即离子进出材料结构的过程,是商业锂离子电池如何工作的核心。这一概念也是新兴技术的核心,包括电致变色、海水淡化、热开关和电阻开关材料。关于电池技术,氧化物材料长期以来一直是选择的嵌入材料。然而,它们遭受与离子嵌入相关的劣化,这在电池的长时间充电和放电时缓慢地劣化电池性能,这限制了电池的寿命。该项目由NSF材料研究部门的固态和材料化学计划支持,合成了一类在主体结构中使用氯原子代替氧的新型插层材料。研究了离子嵌入卤化物材料的可逆性,并与嵌入氧化物材料的可逆性进行了比较,得出了这类新型嵌入材料的结构-性能关系。该项目为设计更坚固的锂离子电池插层材料提供了新的途径。此外,作为该项目的一部分,还组织了外联活动,与服务不足的社区进行接触,并为有潜力进一步发展美国劳动力的本科生提供教育机会。第二部分: 本研究的目的是由NSF材料研究部门的固态和材料化学计划支持,旨在揭示控制碱金属阳离子电化学嵌入过渡金属卤化物的因素,以便开发下一代锂离子或钠离子电池技术。为此,首席研究员和他在波士顿学院的研究小组进行了一项实验研究,将新型含锂或钠过渡金属卤化物的合成与控制其电化学(脱嵌)的物理性质的测量相结合。指导这项工作的中心假设是,层状卤化物可以提供快速的碱金属阳离子嵌入(脱嵌),同时避免破坏性的结构转变,这种结构转变阻碍了在高电位下从氧化物中提取锂或钠。通过绘制控制层状卤化物的氧化还原化学的化学景观,这项工作旨在奠定对配体极化率,大小和电负性如何修改层状材料的氧化还原性质的基本理解。新型亚稳多晶型物的合成,并通过比较它们的结构特征和电化学响应与更稳定的,层内和层间的相互作用之间存在的竞争,可以揭示插入层状卤化物。结合电和磁测量,结果被整合,以找出阳离子嵌入赋予过渡金属层状卤化物层间和层内相互作用之间存在的竞争。在这项工作中收集的方法和知识,以确定有前途的嵌入材料与可调的电子性能。总的来说,这项工作推进了可充电电池过渡金属卤化物的氧化还原化学,并为开发新的卤化物化合物铺平了道路。该研究工作的补充,参与外展计划,为代表性不足和服务不足的学生在8-12年级,并聘请本科生研究人员在该项目。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexis Grimaud其他文献
An eye on surface changes
密切关注表面变化
- DOI:
10.1038/s41929-018-0059-8 - 发表时间:
2018-04-16 - 期刊:
- 影响因子:44.600
- 作者:
Alexis Grimaud - 通讯作者:
Alexis Grimaud
Porosity as a Morphology Marker to Probe the Degradation of IrO2 Anode Catalyst Layers in Proton Exchange Membrane Water Electrolyzers
孔隙率作为形态标志来探测质子交换膜水电解槽中 IrO2 阳极催化剂层的降解
- DOI:
10.1021/acs.chemmater.3c01524 - 发表时间:
2023 - 期刊:
- 影响因子:8.6
- 作者:
Silvia Duran;Alexis Grimaud;M. Faustini;J. Peron - 通讯作者:
J. Peron
Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging
高速压缩拉曼成像揭示的并发析氧反应路径
- DOI:
10.1038/s41467-024-52536-7 - 发表时间:
2024-09-27 - 期刊:
- 影响因子:15.700
- 作者:
Raj Pandya;Florian Dorchies;Davide Romanin;Jean-François Lemineur;Frédéric Kanoufi;Sylvain Gigan;Alex W. Chin;Hilton B. de Aguiar;Alexis Grimaud - 通讯作者:
Alexis Grimaud
Batteries: Beyond intercalation and conversion
电池:超越嵌入和转换
- DOI:
10.1038/nenergy.2017.3 - 发表时间:
2017-01-23 - 期刊:
- 影响因子:60.100
- 作者:
Alexis Grimaud - 通讯作者:
Alexis Grimaud
Alkaline electrolyzers: Powering industries and overcoming fundamental challenges
碱性电解槽:为工业提供动力并克服根本挑战
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:39.8
- 作者:
Nicolas Dubouis;David Aymé;D. Degoulange;Alexis Grimaud;Hubert Girault - 通讯作者:
Hubert Girault
Alexis Grimaud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Tuning PARP-1 retention and release on DNA breaks
调节 DNA 断裂时 PARP-1 的保留和释放
- 批准号:
10363534 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Toward a decrease in dietary crude protein in broilers: amino acids adjustment considering both structural and functional roles, fine tuning of mineral profile, and energy:protein
降低肉鸡日粮粗蛋白:考虑结构和功能作用的氨基酸调整、矿物质成分的微调以及能量:蛋白质
- 批准号:
543700-2019 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Collaborative Research and Development Grants
Toward a decrease in dietary crude protein in broilers: amino acids adjustment considering both structural and functional roles, fine tuning of mineral profile, and energy:protein
降低肉鸡日粮粗蛋白:考虑结构和功能作用的氨基酸调整、矿物质成分的微调以及能量:蛋白质
- 批准号:
543700-2019 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Collaborative Research and Development Grants
Collaborative Research: Structural and functional architecture shaping neural tuning within the human posterior superior temporal sulcus
合作研究:塑造人类颞上沟内神经调节的结构和功能架构
- 批准号:
1658560 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Structural and functional architecture shaping neural tuning within the human posterior superior temporal sulcus
合作研究:塑造人类颞上沟内神经调节的结构和功能架构
- 批准号:
1658278 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Functionality tuning based on morphological and structural control of low-dimensional hydroxide nanomaterials
基于低维氢氧化物纳米材料形态和结构控制的功能调整
- 批准号:
15H03534 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Using De Novo Protein Models to Understand Functional Tuning in Di-Iron Carboxyla
使用 De Novo 蛋白质模型了解二铁羧基的功能调节
- 批准号:
8689205 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
STRUCTURAL TUNING OF NANOGAPS USING FIELD-EMISSION-INDUCED ELECTROMIGRATION
使用场发射诱导电迁移对纳米间隙进行结构调整
- 批准号:
25630122 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Structural Tuning and Template Effect of Surface Nanospace by using Planer π-Conjugated Molecules
利用平面π共轭分子对表面纳米空间进行结构调控和模板效应
- 批准号:
19750033 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Structural dynamics and functional tuning of large host cavity created by cyclic metal arrangement
循环金属排列产生的大型主腔的结构动力学和功能调整
- 批准号:
16550058 - 财政年份:2004
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)