CAS-Climate: Ion and Interfacial Dynamics in Polymerized Ionic Liquids

CAS-Climate:聚合离子液体中的离子和界面动力学

基本信息

  • 批准号:
    2327018
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY:The rising energy needs of our society cannot be met without development of novel, high-performance, clean-energy conversion and storage devices. Electrolytes are a critical component of these devices, as these materials are the media for selective transport of the target electroactive species. However, safety, stability, and selectivity issues are an on-going concern in many state-of-the-art electrolytes. A unique focus of the current project is the investigation of novel approaches to enhance charge transport in polymerized ionic liquids by taking advantage of confinement and interfacial interactions, which would make them suitable as electrolytes. The fundamental understanding obtained from the planned research will provide a basis for deliberate and optimal design of polymers for many sustainability-relevant technological applications, such as batteries, fuel cells, and supercapacitors, where interfaces play a significant role in determining the overall functionality. In addition, the knowledge gained from this project concerning the impact of the chemistry of solid surfaces in contact with polymers, the type of polymer, extent of confinement and sample preparative conditions will be of benefit to the polymer science and engineering communities. An important component of this project also involves several integrated educational activities. The project will contribute to training and education of specialists in polymer nanotechnology and materials science through active involvement of graduate and undergraduate students in this research. The proposed program emphasizes work with underrepresented groups and research experiences for high school students.TECHNICAL SUMMARY:Polymerized ionic liquids are a class of novel functional polymer electrolytes that combines the unique physicochemical properties of molecular ionic liquids (e.g. non-flammability, wide electrochemical windows, negligible vapor pressures, and ionic conduction) with the outstanding mechanical characteristics of polymers. These materials are promising for a variety of clean-energy applications including dye-sensitized solar cells, portable batteries, actuators, field-effect transistors and electrochromic devices. However, their ionic conductivity, which is one of the most critical properties in the context of electrochemical energy applications, drops by many orders of magnitude in comparison to their low molecular weight counterparts upon polymerization. In the proposed project, a new approach to developing fundamental understanding for rational design of polymerized ionic liquids with high ionic conductivity and other desirable electrochemical properties will be investigated. The overall goal of the planned research is to employ nanoscale confinement and interfacial forces to develop a fundamental framework for designing polymerized ionic liquids with enhanced ionic conduction. The major objectives of the planned work are to: (i) develop a fundamental understanding of the impact of the extent of nanoscale confinement (as reflected by the mean pore diameters and polymer film thicknesses) on polymerization kinetics, ion transport and dynamics in confined polymerized ionic liquids, (ii) unravel the role of polymer/pore-wall interactions on polymerization kinetics, ion dynamics and charge transport, (iii) investigate the effect of molecular structure (chemistry) of polymerized ionic liquids on their ion dynamics and charge transport in nanopores, and (iv) elucidate the impact of the dimensionality (type) of confinement on polymerization kinetics, ion transport and dynamics in confined polymerized ionic liquids. The detailed fundamental understanding of the impact of nanoscale confinement gained from this project will provide a scientific framework for the design of functional polymers with relevance to sustainability and unique properties for numerous technologies, including polymer electrolytes suitable for use in electrochemical power sources and devices..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:如果不开发新型、高性能、清洁的能源转换和储存设备,就无法满足我们社会不断增长的能源需求。电解质是这些装置的关键组分,因为这些材料是用于选择性输送目标电活性物质的介质。然而,安全性、稳定性和选择性问题是许多最先进的电解质中持续存在的问题。目前项目的一个独特的重点是研究新的方法,以提高聚合离子液体中的电荷传输,通过利用限制和界面相互作用,这将使它们适合作为电解质。从计划的研究中获得的基本理解将为许多可持续性相关技术应用(如电池,燃料电池和超级电容器)的聚合物的精心和优化设计提供基础,其中界面在确定整体功能方面发挥着重要作用。此外,从该项目中获得的关于与聚合物接触的固体表面的化学影响、聚合物的类型、限制程度和样品制备条件的知识将有益于聚合物科学和工程界。该项目的一个重要组成部分还涉及若干综合教育活动。该项目将通过研究生和本科生积极参与这项研究,为聚合物纳米技术和材料科学专家的培训和教育做出贡献。技术概要:聚合离子液体是一类新型的功能性聚合物电解质,它将分子离子液体的独特物理化学性质(如不可燃性、宽电化学窗口、可忽略的蒸汽压和离子传导性)与聚合物的突出机械特性相结合。这些材料有希望用于各种清洁能源应用,包括染料敏化太阳能电池、便携式电池、致动器、场效应晶体管和电致变色器件。然而,它们的离子电导率(在电化学能量应用的背景下是最关键的性质之一)与它们的低分子量对应物相比在聚合时下降了许多数量级。在拟议的项目中,将研究一种新的方法来发展基本的理解,以合理设计具有高离子电导率和其他理想的电化学性能的聚合离子液体。计划研究的总体目标是采用纳米级限制和界面力来开发用于设计具有增强的离子传导的聚合离子液体的基本框架。计划工作的主要目标是:(i)从根本上了解纳米尺度限制程度的影响(如由平均孔径和聚合物膜厚度所反映的)对受限聚合离子液体中的聚合动力学、离子传输和动力学的影响,(ii)阐明聚合物/孔壁相互作用对聚合动力学、离子动力学和电荷传输的作用,(iii)研究聚合离子液体的分子结构(化学)对其离子动力学和纳米孔中电荷传输的影响,以及(iv)阐明限制的维度(类型)对聚合动力学、离子传输和受限聚合离子液体中的动力学的影响。从该项目中获得的对纳米级限制影响的详细基本理解将为功能聚合物的设计提供科学框架,这些功能聚合物与许多技术的可持续性和独特性能相关,包括适用于电化学电源和设备的聚合物电解质。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Sangoro其他文献

Joshua Sangoro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Sangoro', 18)}}的其他基金

CAS-Climate: Ion and Interfacial Dynamics in Polymerized Ionic Liquids
CAS-Climate:聚合离子液体中的离子和界面动力学
  • 批准号:
    2221757
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Interfacial Dynamics in Ultrathin Polymer Films
超薄聚合物薄膜中的界面动力学
  • 批准号:
    1905597
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Mesoscale Aggregation and Interfacial Dynamics in Ionic Liquids
职业:离子液体中的介观聚集和界面动力学
  • 批准号:
    1753282
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Ion dynamics and charge transport in ultrathin films of polymerized ionic liquids
聚合离子液体超薄膜中的离子动力学和电荷传输
  • 批准号:
    1508394
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

What is the impact of increasing boreal forest fires on Arctic climate and sea ice?
北方森林火灾的增加对北极气候和海冰有何影响?
  • 批准号:
    2337045
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
  • 批准号:
    2406927
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Conference: Workshop on Mobilizing Our Universities for Education on Energy Use, Carbon Emissions, and Climate Change
会议:动员大学开展能源使用、碳排放和气候变化教育研讨会
  • 批准号:
    2402605
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
  • 批准号:
    2305578
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship Award
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
  • 批准号:
    2305659
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship Award
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
  • 批准号:
    2315399
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Cooperative Agreement
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
  • 批准号:
    24K13527
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了