RII Track-4:@NASA: Investigation of Two-Phase Aerosol Formation, Transport, and Deposition in Aerosol Jet Printing for Submicron Manufacturing of Printed Electronic Devices

RII Track-4:@NASA:用于印刷电子设备亚微米制造的气溶胶喷射印刷中两相气溶胶形成、传输和沉积的研究

基本信息

项目摘要

This project will provide a fellowship to an Assistant professor, and a graduate student at the Marshall University Research Corporation (Marshall) to conduct research in collaboration with researchers at the NASA Marshall Space Flight Center in Alabama. Through the fellowship, the PI aims to identify the key phenomena behind the aerodynamics of aerosols jet printing that affect material deposition and thus the resolution of device fabrication. The U.S. semiconductor industry is a major economic driver, making up 10% of the nation's manufacturing sector and contributing over $250 billion a year in value to the U.S. economy. Semiconductor devices support a wide range of applications, such as fifth-generation (5G) communications, artificial intelligence, high-performance computing, security, and local/remote sensing. Commercial markets, such as the Internet-of-Things, have significantly increased the need for semiconductor-based products. Also, the rapid adoption of new, more powerful technologies is driving demand for additional semiconductor production capacity in the U.S. Additionally, there is a burgeoning need for "high-resolution" device fabrication to fulfill today's performance characteristics, such as low power consumption, fast switching speeds, and increased computing power. Aerosol jet printing (AJP) has emerged as a high-resolution, direct-write manufacturing method for fabrication of a broad spectrum of electronics, such as sensors, optoelectronic devices, and fine-pitch electronics. However, despite recent advances in the AJP technology and formulation of novel functional mate-rials, "submicron" fabrication of electronic devices has encountered serious challenges due largely to the intrinsic limitations and complexity behind the underlying physics of AJP process. There is, therefore, a critical need to identify the link between the governing physical phenomena and the resolution of AJP toward submicron device fabrication beyond today's limits.The longterm goal of this project is to contribute toward submicron direct-write fabrication of printed electronic devices. In pursuit of this goal, the overall objective of the project is to identify the key phenomena behind the aerodynamics of AJP that affect the resolution of material deposition and ultimately device fabrication. The proposed research plan is based on advanced computational fluid dynamics (CFD) models, followed by experimental characterization of the resolution of aerosol deposition carried out at NASA's Marshall Space Flight Center. The computational models include not only the 3D geometry of various AJP deposition heads with different aerosol handling mechanisms, but also the processes of turbulent aerosol atomization, transport, and deposition. The contribution of this research project will be significant because it is expected: (i) to identify the key aerodynamic phenomena influencing feature size and therefore the resolution of material deposition in AJP, and (ii) to pave the way for submicron direct-write fabrication of semiconductor electronic devices (not feasible today). This project will significantly enhance the device fabrication capability of the U.S., will strengthen the U.S. semiconductor industry, and consequently will contribute to the enhancement of national prosperity, security, and U.S. leadership in manufacturing. In addition, NASA will be able to design, manufacture, and test novel AJP deposition heads on the basis of the established computational models as well as experimental observations of the AJP aerodynamics. Furthermore, this project will reduce the scientific barriers that limit direct-write additive manufacturing and will catalyze new manufacturing capabilities that have not been materialized today.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为助理教授提供奖学金,以及马歇尔大学研究公司(Marshall)的研究生,与阿拉巴马州NASA Marshall太空飞行中心的研究人员合作进行研究。 通过奖学金,PI旨在确定气溶胶喷射打印的空气动力学背后的关键现象,这些射流印刷会影响材料沉积,从而消除设备制造。美国半导体行业是主要的经济驱动力,占美国制造业的10%,每年为美国经济贡献超过2500亿美元的价值。半导体设备支持广泛的应用程序,例如第五代(5G)通信,人工智能,高性能计算,安全性和本地/遥感。商业市场(例如The-Things Internet)已大大增加了对基于半导体产品的需求。此外,新的,更强大的技术的迅速采用正在推动对美国额外的半导体生产能力的需求,此外,还需要对“高分辨率”设备制造以实现当今的性能特征,例如低功耗,快速切换速度和增加计算能力。气溶胶喷气打印(AJP)已成为一种用于制造广泛电子产品的高分辨率,直接制造方法,例如传感器,光电设备和精细式电子产品。然而,尽管AJP技术的最新进展和新型功能性伴侣式摩尔群的提高,但电子设备的“亚微米”制造却遇到了严重的挑战,这在很大程度上是由于AJP过程的基本物理学背后的固有局限性和复杂性。因此,至关重要的需要确定管理物理现象与AJP分辨率与当今限制之外的次级设备制造之间的联系。该项目的长期目标是有助于subsicron Direct-Write-Write-Write印刷电子设备。为了实现这一目标,该项目的总体目标是确定AJP空气动力学背后的关键现象,该现象影响了材料沉积和最终设备制造的分辨率。拟议的研究计划基于先进的计算流体动力学(CFD)模型,然后是在NASA的Marshall太空飞行中心进行的气溶胶沉积分辨率的实验表征。计算模型不仅包括具有不同的气溶胶处理机制的各种AJP沉积头的3D几何形状,还包括湍流气雾雾化,传输和沉积的过程。该研究项目的贡献将是重要的,因为它是可以预期的:(i)确定影响特征大小的关键空气动力学现象,从而识别AJP中材料沉积的分辨率,以及(ii)为subsicrone tirect-write with-direct-write制造半导体电子设备(今天不可用)。该项目将显着增强美国的设备制造能力,增强美国半导体行业,从而有助于增强国家繁荣,安全和美国在制造业领域的领导力。此外,NASA将能够根据已建立的计算模型以及对AJP空气动力学的实验观察来设计,制造和测试新型AJP沉积头。此外,该项目将减少限制直接连接添加剂制造的科学障碍,并将催化今天尚未实现的新制造能力。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roozbeh "Ross" Salary其他文献

Roozbeh "Ross" Salary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

石羊河上游径流水源追踪量化的模拟研究
  • 批准号:
    42301153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
  • 批准号:
    62306029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
  • 批准号:
    42304051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
  • 批准号:
    62302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
  • 批准号:
    52307021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4: @NASA: Investigation of Erosive Wear Resistance of Ceramic Parts Produced by Additive Manufacturing
RII Track-4:@NASA:增材制造生产的陶瓷零件的耐冲蚀磨损性能研究
  • 批准号:
    2327252
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
  • 批准号:
    2327168
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
  • 批准号:
    2327374
  • 财政年份:
    2024
  • 资助金额:
    $ 29.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了