Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses

合作研究:草类快速气孔动力学的细胞和生物力学机制

基本信息

  • 批准号:
    2327732
  • 负责人:
  • 金额:
    $ 35.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Stomata, which are microscopic pores on the surfaces of plants, are gateways that control photosynthesis in the crops that provide humanity with food and sustainable materials. This project investigates how stomata in grasses, which include staple food crops such as maize and wheat, are constructed with the capability to rapidly open and close to regulate photosynthesis and water transport in response to changing environmental conditions. The project will provide interdisciplinary graduate training and support discovery-based undergraduate research courses in molecular genetics, plant cell biology, computer vision, and biomechanics experimentation and modeling, expanding participation in these fields for diverse early-career scientists. The exciting biology of stomatal dynamics in plants and how understanding and engineering stomata can help address pressing societal challenges such as food security and climate change will be shared with K-12 students through a middle school summer camp and mentoring of high school students who will design and complete independent research projects. The outcomes of this work promise to help improve the efficiency with which plants capture carbon dioxide and convert it into food and useful materials such as fibers and wood.The four-celled stomatal complexes of grasses have been hypothesized to function via a “see-saw” mechanism by which the expansion of dumbbell-shaped guard cells is matched by deflation of the round subsidiary cells that flank the guard cells, enabling rapid adjustment of the size of the stomatal pore in response to environmental shifts. However, this hypothesis has not been rigorously tested, and our understanding of stomatal biomechanics and function in grasses is limited. This project combines molecular genetics, cell biology, computer vision, mechanical testing, and computer modeling of stomatal biomechanics to dissect the molecular, physiological, and cellular underpinnings of rapid stomatal dynamics in a model grass species, Brachypodium distachyon. The composition of the cell walls in guard and subsidiary cells will be manipulated in Brachypodium distachyon through advanced genetic engineering. The resulting changes will be examined with respect to stomatal function, biomechanical properties of the modified plants will be measured and modeled, and computer vision pipelines will be used to quantify changes in cell volumes and shapes. With these approaches, experimentally testable computational models of normal and altered stomatal complexes will help predict how stomatal function might be further optimized to enhance crop yields, water use efficiency, and carbon drawdown.This project is jointly funded by the NSF/BIO/MCB Cell Dynamics & Function Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气孔是植物表面的微小气孔,是控制作物光合作用的门户,为人类提供食物和可持续材料。该项目研究了包括玉米和小麦等主要粮食作物在内的禾本科植物的气孔是如何构建成具有快速打开和关闭的能力,以调节光合作用和水分运输,以响应不断变化的环境条件。该项目将提供跨学科的研究生培训,并支持分子遗传学、植物细胞生物学、计算机视觉、生物力学实验和建模方面的基于发现的本科研究课程,扩大不同早期职业科学家在这些领域的参与。令人兴奋的植物气孔动力学生物学,以及了解和设计气孔如何帮助应对紧迫的社会挑战,如粮食安全和气候变化,将通过中学夏令营和对将设计和完成独立研究项目的高中生的指导,与K-12学生分享。这项工作的成果有望帮助提高植物捕获二氧化碳的效率,并将其转化为食物和有用的材料,如纤维和木材。草的四细胞气孔复合体被假设为通过一种“拉锯”机制发挥作用,通过这种机制,哑铃形保卫细胞的扩张与保卫细胞两侧的圆形附属细胞的收缩相匹配,从而能够根据环境变化快速调整气孔孔的大小。然而,这一假说还没有得到严格的检验,我们对禾本科植物气孔生物力学和功能的了解也是有限的。这个项目结合了分子遗传学、细胞生物学、计算机视觉、机械测试和气孔生物力学的计算机模拟,剖析了模式草种青冈气孔快速动态的分子、生理和细胞基础。保卫细胞和辅助细胞中细胞壁的组成将通过先进的基因工程在远端短柱藻中进行操纵。将检查由此产生的气孔功能的变化,将测量和模拟改良植物的生物力学特性,并将使用计算机视觉管道来量化细胞体积和形状的变化。有了这些方法,正常和改变的气孔复合体的可实验测试的计算模型将有助于预测如何进一步优化气孔功能,以提高作物产量、水分利用效率和碳吸收。该项目由NSF/BIO/MCB细胞动力学和功能计划以及既定的刺激竞争研究计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Turner其他文献

Testing the liberal subject: (in)security, responsibility and ‘self-improvement’ in the UK citizenship test
测试自由学科:英国公民身份测试中的安全感、责任感和“自我完善”
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Turner
  • 通讯作者:
    Joseph Turner
Deprivation of Citizenship as Colonial Violence: Deracination and Dispossession in Assam
作为殖民暴力的剥夺公民身份:阿萨姆邦的消灭和剥夺
  • DOI:
    10.1093/ips/olac009
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Rudabeh Shahid;Joseph Turner
  • 通讯作者:
    Joseph Turner
Significance of Positive Bronchial Cytology in Presence of Squamous Cell Carcinoma of Upper Aerodigestive Tract
支气管细胞学阳性对上呼吸消化道鳞状细胞癌的意义
P169. Biomechanical Advantages of a Novel Dual-threaded Pedicle Screw Design vs. Traditional Single-threaded Pedicle Screws
  • DOI:
    10.1016/j.spinee.2008.06.811
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Manuel Pinto;Antonio Valdevit;Neil Crawford;J. Kenneth Burkus;Phillip Reyes;Joseph Turner
  • 通讯作者:
    Joseph Turner
Experience introducing physician assistant students into a medical student emergency medicine clerkship
  • DOI:
    10.1016/j.xjep.2018.10.005
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph Turner;Daniel Corson-Knowles;Bart Besinger;Rebecca Rebman;Cherri Hobgood;Megan Palmer
  • 通讯作者:
    Megan Palmer

Joseph Turner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Turner', 18)}}的其他基金

IUCRC Planning Grant University of Nebraska-Lincoln: Center to Accelerate Recipe Development for Additive Manufacturing of Metals (CARDAMOM)
IUCRC 规划拨款内布拉斯加大学林肯分校:加速金属增材制造配方开发中心 (CARDAMOM)
  • 批准号:
    2333364
  • 财政年份:
    2024
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
The therapeutic potential of targeting bioactive lipids in filariasis
丝虫病靶向生物活性脂质的治疗潜力
  • 批准号:
    MR/X001911/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Research Grant
Adoption of a mouse model of veterinary filariasis for preclinical drug testing
采用兽用丝虫病小鼠模型进行临床前药物测试
  • 批准号:
    NC/W000970/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Research Grant
Collaborative Research: Integrated Analysis of the Cell Biological, Biomechanical, and Physiological Dynamics of Stomatal Guard Cells in Plants
合作研究:植物气孔保卫细胞的细胞生物学、生物力学和生理动力学的综合分析
  • 批准号:
    2015947
  • 财政年份:
    2020
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of an X-Ray Computed Tomography System at the University of Nebraska-Lincoln for Advancing Multidisciplinary Research and Education in the Great Plains Region
MRI:内布拉斯加大学林肯分校购买 X 射线计算机断层扫描系统,以推进大平原地区的多学科研究和教育
  • 批准号:
    1920245
  • 财政年份:
    2019
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Validating alternative models to cats and dogs for heartworm drug testing
验证猫和狗的替代模型用于心丝虫药物测试
  • 批准号:
    NC/S001131/1
  • 财政年份:
    2018
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Research Grant
Collaborative Research: An Integrated Experimental and Computational Approach to Discover Biomechanical Mechanisms of Leaf Epidermal Morphogenesis
合作研究:探索叶表皮形态发生生物力学机制的综合实验和计算方法
  • 批准号:
    1715444
  • 财政年份:
    2017
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Is targeting vascular remodelling by filarial parasites a viable anti-morbidity solution?
通过丝虫寄生虫进行血管重塑是一种可行的抗发病解决方案吗?
  • 批准号:
    MR/L018756/1
  • 财政年份:
    2014
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Research Grant
EAGER: Collaborative Research: Novel micromechanical and computational approaches to discover the mechanisms of symmetry breaking and polarized growth in dicot pavement cells
EAGER:协作研究:新的微机械和计算方法,用于发现双子叶植物路面细胞对称性破缺和极化生长的机制
  • 批准号:
    1249655
  • 财政年份:
    2012
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Continuing Grant
EAGER: Loss-Free Energy Storage and Transition Due to Nature's Miracle Protein - Resilin
EAGER:大自然的神奇蛋白质 - Resilin 实现无损失的能量存储和转换
  • 批准号:
    1050685
  • 财政年份:
    2010
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Alpha-arrestins' impact on cellular physiology
合作研究:α-抑制蛋白对细胞生理学的影响
  • 批准号:
    2321625
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Alpha-arrestins' impact on cellular physiology
合作研究:α-抑制蛋白对细胞生理学的影响
  • 批准号:
    2321624
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234031
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Safeguarding Next-Generation Emergency Services (NG-9-1-1) over Cellular Networks: From Design to Practice
协作研究:SaTC:核心:中:通过蜂窝网络保障下一代紧急服务 (NG-9-1-1):从设计到实践
  • 批准号:
    2246050
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Safeguarding Next-Generation Emergency Services (NG-9-1-1) over Cellular Networks: From Design to Practice
协作研究:SaTC:核心:中:通过蜂窝网络保障下一代紧急服务 (NG-9-1-1):从设计到实践
  • 批准号:
    2246051
  • 财政年份:
    2023
  • 资助金额:
    $ 35.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了