Collaborative Research: Enabling Scalable Redox Reactions in Biomanufacturing

合作研究:在生物制造中实现可扩展的氧化还原反应

基本信息

  • 批准号:
    2328145
  • 负责人:
  • 金额:
    $ 94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Biomanufacturing, the biosynthesis of commodity chemicals, fuels, and medicines, represents a fast-growing industry with over $150 billion in revenue in the US. To continue to grow in scale and economic viability, biomanufacturing must increase its carbon and energy efficiency. However, biosynthetic logics that exist in Nature often do not operate at maximal carbon or energy efficiency. This is the case because release of carbon is required as carbon dioxide and energy has to be wasted as heat to afford a robust thermodynamic driving force. One way to overcome this challenge is to introduce unnatural thermodynamic driving forces. This project contributes a suite of unnatural, chemical tools to deploy stronger-than-Nature thermodynamic driving forces in the form of low reduction-potential reducing equivalents. These tools augment the natural capability of biological systems and lead to the conversion of renewable resources into valuable products. Through the integrated research and outreach activities, the project improves biomanufacturing to better meet the Nation's needs for energy, food, commodities, and medicine and concomitantly contributes to undergraduate and graduate education in STEM. The project plans activities to motivate K-12 students to pursue a career in STEM by participating in hands-on experiences in practical science. Current biomanufacturing processes face a fundamental challenge: biosynthetic logics that exist in Nature often do not operate at maximal carbon or energy efficiency, because carbon needs to be released as carbon dioxide and energy needs to be wasted as heat to afford a robust thermodynamic driving force. To overcome this challenge, unnatural thermodynamic driving forces are introduced. This proposal develops unnatural cofactors to deploy stronger-than-Nature thermodynamic driving forces. The overall objectives are to introduce unnatural redox cofactors that are more potent reducing reagents than NAD(P) into Escherichia coli metabolism and use them to power carbon-efficient biomanufacturing of commodity chemicals. This is achieved by engineering key enzymes to utilize these unnatural cofactors through an integrated Design-Build-Test-Learn workflow spanning genome mining, high-throughput enzyme discovery with directed evolution, structural and biophysical study of the engineered enzymes, as well as machine learning-based data interpretation to distill general design principles that govern protein-cofactor interactions. A better overall understanding of how structural plasticity of the cofactors is tolerated by enzymes, advances capability beyond what Nature selected for during evolution and opens new design space for proteins.This award is co-funded by the Systems and Synthetic Biology program in the Division of Molecular and Cellular Biosciences and the Cellular and Biochemical Engineering program in the Division of Chemical, Bioengineering, Environmental and Transport SystemsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物制造,商品化学品,燃料和药物的生物合成,是一个快速增长的行业,在美国的收入超过1500亿美元。为了继续扩大规模和经济可行性,生物制造必须提高其碳和能源效率。然而,自然界中存在的生物合成逻辑通常不会以最大的碳或能源效率运行。这是因为需要以二氧化碳的形式释放碳,并且必须以热量的形式浪费能量以提供强大的热力学驱动力。克服这一挑战的一种方法是引入非自然的热力学驱动力。该项目贡献了一套非自然的化学工具,以低还原电位还原当量的形式部署比自然更强的热力学驱动力。这些工具增强了生物系统的自然能力,并导致可再生资源转化为有价值的产品。通过综合研究和推广活动,该项目改善了生物制造,以更好地满足国家对能源,食品,商品和医药的需求,并同时有助于STEM的本科和研究生教育。该项目计划通过参与实践科学的实践经验,激励K-12学生从事STEM职业。当前的生物制造过程面临着一个根本性的挑战:自然界中存在的生物合成逻辑通常不能以最大的碳或能源效率运行,因为碳需要以二氧化碳的形式释放,而能量需要以热量的形式浪费,以提供强大的热力学驱动力。为了克服这一挑战,引入了非自然的热力学驱动力。这个提议开发了非自然的辅因子来部署比自然更强大的热力学驱动力。总体目标是将比NAD(P)更有效的还原剂的非天然氧化还原辅因子引入大肠杆菌代谢,并使用它们为商品化学品的碳效率生物制造提供动力。这是通过设计关键酶来实现的,以通过集成的设计-构建-测试-学习工作流来利用这些非天然辅因子,该工作流跨越基因组挖掘,具有定向进化的高通量酶发现,工程酶的结构和生物物理研究,以及基于机器学习的数据解释,以提取管理蛋白质-辅因子相互作用的一般设计原则。更好地全面了解辅因子的结构可塑性如何被酶所耐受,在进化过程中超越自然选择的能力,并为蛋白质开辟新的设计空间。该奖项由分子和细胞生物科学部的系统和合成生物学项目以及化学,生物工程,环境和运输系统这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Han Li其他文献

Experimental demonstration of fronthaul flexibility for enhanced CoMP service in 5G radio and optical access networks
5G 无线电和光接入网络中增强型 CoMP 服务的前传灵活性实验演示
  • DOI:
    10.1364/oe.25.021247
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Jiawei Zhang;Yuefeng Yi;Hao Yu;Xingang Huang;Han Li
  • 通讯作者:
    Han Li
Transparency of graphene membranes to eV-scale electrons
石墨烯膜对电子级电子的透明度
Contributions of National Key Forestry Ecology Projects to the forest vegetation carbon storage in China
国家林业生态重点工程对我国森林植被碳储量的贡献
  • DOI:
    10.1016/j.foreco.2020.117981
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yu Zhang;Ji Yuan;Chengming You;Rui Cao;Bo Tan;Han Li;Wanqin Yang
  • 通讯作者:
    Wanqin Yang
Comprehensive Study of the Chemical, Physical, and Structural Evolution of Molecular Layer Deposited Alucone Films during Thermal Processing
分子层沉积 Alucone 薄膜在热处理过程中化学、物理和结构演变的综合研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Vamseedhara Vemuri;S. King;W. Lanford;J. Gaskins;P. Hopkins;Jeremy Van Derslice;Han Li;N. Strandwitz
  • 通讯作者:
    N. Strandwitz
Levistolide A Attenuates Alzheimer’s Pathology Through Activation of the PPARγ Pathway
Levistolide A 通过激活 PPARγ 途径减轻阿尔茨海默病的病理学
  • DOI:
    10.1007/s13311-020-00943-1
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Qu Xiao-Dan;Guan Pei-Pei;Han Li;Wang Zhan-You;Huang Xue-Shi
  • 通讯作者:
    Huang Xue-Shi

Han Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Han Li', 18)}}的其他基金

A Dynamical Systems Weekend Conference at Wesleyan
卫斯理学院动力系统周末会议
  • 批准号:
    2000176
  • 财政年份:
    2020
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
CAREER: Engineering redox metabolism using unnatural cofactors
职业:使用非天然辅助因子工程氧化还原代谢
  • 批准号:
    1847705
  • 财政年份:
    2019
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Group Actions, Homogeneous Dynamics, and Number Theory
群作用、齐次动力学和数论
  • 批准号:
    1700109
  • 财政年份:
    2017
  • 资助金额:
    $ 94万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了