A Dynamical Systems Weekend Conference at Wesleyan
卫斯理学院动力系统周末会议
基本信息
- 批准号:2000176
- 负责人:
- 金额:$ 0.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support participants in a conference to be held at Wesleyan University in Middletown, Connecticut on April 4-5, 2020. The conference is in the area of dynamical systems. There will be twelve main speakers, and will include early career mathematicians, especially graduate students and post-doctoral scholars. Several important problems originating from various fields in mathematics and computer science can be studied in terms of dynamical systems. The motion of a particle in space has been modeled by the action of a function or transformation of the space. Later mathematicians considered several such functions that were put together in group of transformations and studied what are called group actions. The goal of the conference at Wesleyan is to bring together a variety of researchers and students whose work connects to the study of group actions in dynamics to discuss the latest research findings and to seek collaborations to attack open problems in this area. Homogeneous dynamics has proven to be a powerful tool in the study of number theory and geometry. Although in many cases qualitative results already suffice for applications, there are situations in which it is essential to obtain effective, quantitative results in homogenous dynamics. It usually involves giving estimates on the rates or error terms which concern various aspects of group actions on spaces. The conference will discuss recent progress on effective equi-distribution and shrinking targets in homogeneous dynamics, and study how these results could help advance the understanding of problems in number theory. Another main topic of the conference is the behavior of dynamical systems modeling a ball bouncing around inside a polygon. This research subject has found exciting connections and applications to algebraic geometry, rigidity theory in geometry, Teichmuller theory, and other areas of mathematics. The conference will host talks on recent works in this direction and discuss their applications to the geometry of tiling, translation surfaces, interval exchange transformations, and related topics. The conference will also include research talks in probability theory and random walks on groups, geometry of nilpotent groups, marked length spectrum, and rigidity of surfaces. It will provide a great opportunity for graduate students to be exposed to different perspectives of the modern theory of dynamical systems and to communicate with conference participants. The conference website is https://dynamicalweekend.conference.wesleyan.edu/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持将于2020年4月4日至5日在康涅狄格州米德尔敦卫斯理大学举行的会议的参与者。这次会议的主题是动力系统。将有12位主讲嘉宾,其中包括早期职业数学家,特别是研究生和博士后学者。起源于数学和计算机科学各个领域的一些重要问题可以用动力系统来研究。粒子在空间中的运动是由一个函数的作用或空间的变换来模拟的。后来的数学家考虑了几个这样的函数,它们被放在一组变换中,并研究了所谓的群作用。卫斯理会议的目标是将各种研究人员和学生聚集在一起,他们的工作与动力学中的群体行为研究有关,讨论最新的研究成果,并寻求合作来解决这一领域的开放性问题。齐次动力学已被证明是数论和几何研究的有力工具。虽然在许多情况下,定性结果已经足够应用,但在某些情况下,必须在同质动力学中获得有效的定量结果。它通常涉及对涉及群体在空间上行动的各个方面的比率或误差项进行估计。会议将讨论齐次动力学中有效均匀分布和收缩目标的最新进展,并研究这些结果如何有助于促进对数论问题的理解。会议的另一个主要主题是动力学系统的行为建模,一个球在多边形内弹跳。这一研究课题在代数几何、几何中的刚性理论、Teichmuller理论和其他数学领域中发现了令人兴奋的联系和应用。会议将主持关于这一方向的最新工作的讨论,并讨论它们在平铺几何、平移表面、间隔交换变换和相关主题中的应用。会议还将包括概率论和群上的随机漫步、幂零群的几何、标记长度谱和表面刚性等方面的研究。它将为研究生提供一个接触现代动力系统理论的不同视角并与会议参与者交流的绝佳机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han Li其他文献
Experimental demonstration of fronthaul flexibility for enhanced CoMP service in 5G radio and optical access networks
5G 无线电和光接入网络中增强型 CoMP 服务的前传灵活性实验演示
- DOI:
10.1364/oe.25.021247 - 发表时间:
2017 - 期刊:
- 影响因子:3.8
- 作者:
Jiawei Zhang;Yuefeng Yi;Hao Yu;Xingang Huang;Han Li - 通讯作者:
Han Li
Transparency of graphene membranes to eV-scale electrons
石墨烯膜对电子级电子的透明度
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jiahe Kang;Y. Duan;Wei Gao;Han Li;Changyu Li;Xiao Zhao;Wenlong Li;Chengguang Zhu - 通讯作者:
Chengguang Zhu
Contributions of National Key Forestry Ecology Projects to the forest vegetation carbon storage in China
国家林业生态重点工程对我国森林植被碳储量的贡献
- DOI:
10.1016/j.foreco.2020.117981 - 发表时间:
2020-04 - 期刊:
- 影响因子:3.7
- 作者:
Yu Zhang;Ji Yuan;Chengming You;Rui Cao;Bo Tan;Han Li;Wanqin Yang - 通讯作者:
Wanqin Yang
Comprehensive Study of the Chemical, Physical, and Structural Evolution of Molecular Layer Deposited Alucone Films during Thermal Processing
分子层沉积 Alucone 薄膜在热处理过程中化学、物理和结构演变的综合研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.6
- 作者:
Vamseedhara Vemuri;S. King;W. Lanford;J. Gaskins;P. Hopkins;Jeremy Van Derslice;Han Li;N. Strandwitz - 通讯作者:
N. Strandwitz
Levistolide A Attenuates Alzheimer’s Pathology Through Activation of the PPARγ Pathway
Levistolide A 通过激活 PPARγ 途径减轻阿尔茨海默病的病理学
- DOI:
10.1007/s13311-020-00943-1 - 发表时间:
2020-10 - 期刊:
- 影响因子:5.7
- 作者:
Qu Xiao-Dan;Guan Pei-Pei;Han Li;Wang Zhan-You;Huang Xue-Shi - 通讯作者:
Huang Xue-Shi
Han Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han Li', 18)}}的其他基金
Collaborative Research: Enabling Scalable Redox Reactions in Biomanufacturing
合作研究:在生物制造中实现可扩展的氧化还原反应
- 批准号:
2328145 - 财政年份:2023
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
CAREER: Engineering redox metabolism using unnatural cofactors
职业:使用非天然辅助因子工程氧化还原代谢
- 批准号:
1847705 - 财政年份:2019
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
Group Actions, Homogeneous Dynamics, and Number Theory
群作用、齐次动力学和数论
- 批准号:
1700109 - 财政年份:2017
- 资助金额:
$ 0.6万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Continuing Grant
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
- 批准号:
2338480 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Continuing Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant