ExpandQISE: Track 1: A Deep-Dive into the Materials Science of Alpha-Ta Growth on Oxides for Superconducting Resonator Development
ExpandQISE:轨道 1:深入研究用于超导谐振器开发的氧化物上 α-Ta 生长的材料科学
基本信息
- 批准号:2328747
- 负责人:
- 金额:$ 79.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Quantum computers can potentially make revolutionary changes in how computers function and how computing algorithms are designed. Traditional computers utilize a “bit” to compute and process information, creating a computer speed bottleneck. Quantum computers operate on a different kind of a bit, a quantum bit, the “qubit,” which can be enormously faster in computation times. Superconducting qubits are one of the leading candidates to create quantum computers with the potential to surpass modern supercomputers in solving specific problems. A popular way to create a qubit is to pattern a qubit circuit on a low-loss insulator/ metal structure made of Josephson junctions, coplanar capacitors, inductors, and resonator waveguides. However, creating these circuits for qubits introduces disorder into the insulator/metal structure, causing errors and loss of quantum information. The research team implements a holistic deep-dive of material science on the insulator/metal structure to uncover the sources of this disorder to improve the quality of the qubit circuits. The research team simultaneously implements a new quantum curriculum and a new quantum information science micro-credential utilizing evidence-based teaching methods to reach optimal learning objectives, impact the quantum education field with new teaching modules and classes, and increase participation in the quantum workforce. To this end, the research team concurrently performs physics education research within new quantum science courses and micro-credential by applying evidence-based active engagement and benchmarking learning outcomes versus intended learning goals. This project is conducted across the collaborating universities and measures the success of adapting an early undergraduate-level quantum information science course and incorporating active engagement strategies. Vital improvements in quantum education and workforce development are made by broadening evidence-based instruction in the quantum information science curriculum.Technical Abstract: This research aims to alleviate some of the mystery in two-level system dissipation sources for alpha-Ta superconducting resonator systems by performing a holistic characterization of the dissipation sources and where these dissipation sources are introduced in the growth and fabrication process. To this end, the research team conducts a comprehensive investigation of alpha-Ta grown on several low-dissipation insulating oxide substrates. The research team identifies critical defects introduced during growth and subsequential device processing to remedy defect bottlenecks that adversely affect the quality factor of superconducting resonator circuits. The team systematically correlates the quality factor to specific thin film synthesis procedures, microfabrication procedures, bulk material, and interface defect types identified in structural and conductive electron and scan probe microscopy characterizations. This holistic materials science deep-dive identifies systematic relationships between structure and dissipation and possibly establishes a room-temperature proxy for low-temperature superconducting device performance. At the same time, this research seeks to investigate the fidelity of implementing quantum information education tools and frameworks developed to be accessible at the high school and early undergraduate levels. The project will contribute to quantum education and workforce development through evidence-based instructional strategies such as implementing interactive quantum learning tutorials and clicker question sequences.This project is jointly funded by the Office of Multidisciplinary Activities (MPS/OMA), and the Technology Frontiers Program (TIP/TF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:量子计算机可能会对计算机的功能和计算算法的设计方式产生革命性的变化。传统计算机利用一个“比特”来计算和处理信息,造成了计算机速度瓶颈。量子计算机运行在一种不同的比特上,一种量子比特,“量子比特”,它在计算时间上可以快得多。超导量子比特是创造量子计算机的主要候选者之一,在解决特定问题方面有可能超越现代超级计算机。创建量子位的一种流行方法是在由约瑟夫森结、共面电容器、电感器和谐振器波导制成的低损耗绝缘体/金属结构上图案化量子位电路。然而,为量子比特创建这些电路会将无序引入绝缘体/金属结构,导致量子信息的错误和丢失。研究团队对绝缘体/金属结构进行了全面的材料科学深入研究,以揭示这种无序的来源,从而提高量子位电路的质量。该研究团队同时实施了一个新的量子课程和一个新的量子信息科学微证书,利用基于证据的教学方法来达到最佳的学习目标,通过新的教学模块和课程影响量子教育领域,并增加量子劳动力的参与。为此,研究团队通过应用基于证据的积极参与和基准学习成果与预期学习目标,同时在新的量子科学课程和微证书中进行物理教育研究。该项目在合作大学之间进行,并衡量了早期本科生水平的量子信息科学课程的成功适应,并纳入积极的参与策略。 在量子教育和劳动力发展的重要改进是通过扩大以证据为基础的教学在量子信息科学course.Technical摘要:本研究的目的是减轻一些神秘的两级系统耗散源的α-Ta超导谐振器系统的耗散源,并在这些耗散源的增长和制造过程中引入了一个整体的表征。为此,研究小组对在几种低功耗绝缘氧化物衬底上生长的α-Ta进行了全面的研究。研究小组确定了在生长和后续设备处理过程中引入的关键缺陷,以弥补对超导谐振器电路的品质因数产生不利影响的缺陷瓶颈。该团队系统地将质量因子与特定的薄膜合成程序,微加工程序,散装材料以及结构和导电电子和扫描探针显微镜表征中确定的界面缺陷类型相关联。这种整体材料科学的深入研究确定了结构和耗散之间的系统关系,并可能为低温超导器件性能建立室温代理。 与此同时,这项研究旨在调查实施量子信息教育工具和框架的保真度,这些工具和框架是为了在高中和早期本科阶段使用而开发的。 该项目将通过实施互动式量子学习教程和点击器问题序列等循证教学策略,为量子教育和劳动力发展做出贡献。该项目由多学科活动办公室(MPS/OMA)联合资助,技术前沿计划(TIP/TF)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Corbett其他文献
An Assessment of the relationship between dicrotic notch timing and cardiac preload
重搏切迹时间与心脏前负荷之间关系的评估
- DOI:
10.1109/embc.2015.7318533 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
D. O. Kannangara;S. Davidson;C. Pretty;Shun Kamoi;Joseph Corbett;T. Desaive;G. Shaw;J. Chase - 通讯作者:
J. Chase
Joseph Corbett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: Evaluating the Role of Deep Ocean Equilibration in Warmer Climates
RII Track-4:NSF:评估深海平衡在温暖气候中的作用
- 批准号:
2327230 - 财政年份:2024
- 资助金额:
$ 79.92万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Enhancing Flood Detection and Mapping by Using PolSAR, Metaheuristic, and Deep Learning Algorithms
RII Track-4:@NASA:使用 PolSAR、元启发式和深度学习算法增强洪水检测和绘图
- 批准号:
2327253 - 财政年份:2024
- 资助金额:
$ 79.92万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of a Deep Reactive Ion Etching System for Enhanced Semiconductor Processing Capability
MRI:轨道 1 采购深度反应离子蚀刻系统以增强半导体加工能力
- 批准号:
2320476 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Standard Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001830/1 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Research Grant
RII Track-4: NSF:Assessing Dynamic Connectivity of Streams and Wetlands across Spatial and Human Gradients with Deep Learning
RII Track-4:NSF:利用深度学习评估跨空间和人类梯度的溪流和湿地的动态连通性
- 批准号:
2229616 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track A: Targeted Micro-retrofits based on Building Envelope Scans using Drones, GPR, and Deep Neural Networks
SCC-CIVIC-FA 轨道 A:基于使用无人机、探地雷达和深度神经网络进行建筑包络扫描的有针对性的微改造
- 批准号:
2322242 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Standard Grant
Collaborative Research: Track 4: Developing Equity-Minded Engineering Practitioners (DEEP)
合作研究:轨道 4:培养具有公平意识的工程从业者 (DEEP)
- 批准号:
2308531 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Continuing Grant
Collaborative Research: Track 4: Developing Equity-Minded Engineering Practitioners (DEEP)
合作研究:轨道 4:培养具有公平意识的工程从业者 (DEEP)
- 批准号:
2308532 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Combining Physics and Deep Learning for Accurate River Discharge and Bathymetry Estimation from the Surface Water and Ocean Topography Mission
RII Track-4:@NASA:结合物理学和深度学习,通过地表水和海洋地形任务进行准确的河流流量和水深测量估计
- 批准号:
2327502 - 财政年份:2023
- 资助金额:
$ 79.92万 - 项目类别:
Standard Grant