SCC-CIVIC-PG Track A: Leveraging AI-assist Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment
SCC-CIVIC-PG Track A:利用人工智能辅助微交通改善住房和就业之间的时空错配
基本信息
- 批准号:2043611
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
COVID-19 disproportionately affects the low-wage workers whose spatiotemporal mobility pattens, e.g., between housing and job, have dramatically changed. Microtransit service has been recently launched in Detroit to complement the existing public transit options. Despite the initial success, a salient issue is how to effectively and efficiently utilize microtransit resources to ameliorate spatiotemporal mismatch between employment and housing for low-wage workers. With the rise of Artificial Intelligence (AI) and increasingly available smart mobility data, the vision of this research project is to create a dynamic routing prediction system based on learning the hourly mobility patterns between jobs and housing. It is designed for the stakeholders (i.e., community advocates and public transport authority) to visualize and forecast the mismatch between employment and housing, which is translated into a dynamic trip demand that can be used to design adaptive routing algorithms to optimize the allocation of microtransit resources and to enhance micromobility via minimizing the rider’s first/last mile. Currently public transportation with fixed routes and schedules are periodically tweaked and/or augmented to ameliorate the ever-changing spatial mismatch. Despite its long-term effectiveness, it is not sufficiently flexible to adapt to the hourly spatiotemporal variation of jobs-housing mobility patterns primarily from the hourly paid workers. The long-term goal of this project is to work with civic partners in the city of Detroit to (1) design, implement and deploy an AI-assist microtransit system to ameliorate the spatiotemporal mismatch between housing and employment, particularly for the low-wage workers residing in the under resourced neighborhoods; and (2) use geocoded socioeconomic data to identify the community with disparities in mobility and deploy smart mobility technology to reduce the disparities and foster thriving communities. The project’s near-term objective is to leverage and power the existing microtransit service with cutting-edge technology and select a few spatiotemporally mismatched regions in Detroit as the testbed for our smart mobility strategy.The research innovation is expected to provide immediate, low-cost yet effective public transit solutions that are expected to bring an immediate benefit to the vulnerable communities in Detroit by significantly reducing transit risk, commute time/distance and trip cost. It can be replicated to other US cities to ameliorate the spatiotemporal mismatch between housing and employment. In addition, it can provide insight for designing long-term intervention strategies to eliminate the mismatch and reduce the mobility disparities, for example, government to launch new transportation options and create jobs; and builders to develop housing in the mismatched regions.This project is in response to Track A – CIVIC Innovation Challenge - Communities and Mobility a collaboration with NSF and the Department of Energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19对低收入工人的影响尤为严重,他们的时空流动模式(如住房和工作之间的流动模式)发生了巨大变化。底特律最近推出了微型交通服务,以补充现有的公共交通选择。尽管取得了初步的成功,但一个突出的问题是如何有效和高效地利用微交通资源来改善低收入工人就业和住房之间的时空不匹配。随着人工智能(AI)的兴起和越来越多的智能移动数据的可用性,本研究项目的愿景是创建一个基于学习工作和住房之间每小时移动模式的动态路由预测系统。它是为利益相关者(即社区倡导者和公共交通当局)设计的,用于可视化和预测就业和住房之间的不匹配,这被转化为动态出行需求,可用于设计自适应路由算法,以优化微交通资源的分配,并通过最小化乘客的第一/最后一英里来增强微交通。目前,固定路线和时间表的公共交通定期调整和/或增加,以改善不断变化的空间不匹配。尽管它具有长期的有效性,但它没有足够的灵活性来适应主要来自小时工的工作-住房流动模式的小时时空变化。该项目的长期目标是与底特律市的公民合作伙伴合作:(1)设计、实施和部署人工智能辅助微交通系统,以改善住房和就业之间的时空不匹配,特别是对于居住在资源不足社区的低工资工人;(2)利用地理编码的社会经济数据识别出行差异的社区,并部署智能出行技术,以缩小差距,促进社区繁荣。该项目的近期目标是利用尖端技术为现有的微交通服务提供动力,并在底特律选择一些时空不匹配的地区作为我们智能交通战略的试验台。这项研究创新有望提供即时、低成本且有效的公共交通解决方案,通过显著降低交通风险、通勤时间/距离和出行成本,为底特律的弱势社区带来立竿见影的好处。它可以复制到美国其他城市,以改善住房和就业之间的时空不匹配。此外,它还可以为设计长期干预策略提供见解,以消除不匹配和减少流动性差距,例如,政府推出新的交通选择并创造就业机会;建筑商在不匹配的地区开发住房。这个项目是响应轨道A -公民创新挑战-社区和流动性与美国国家科学基金会和能源部合作。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongxiao Zhu其他文献
"It's Not What We Were Trying to Get At, but I Think Maybe It Should Be": Learning How to Do Trauma-Informed Design with a Data Donation Platform for Online Dating Sexual Violence
“这不是我们想要达到的目标,但我认为也许应该如此”:学习如何利用在线约会性暴力的数据捐赠平台进行创伤知情设计
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wenqi Zheng;Emma Walquist;Isha Datey;Xiangyu Zhou;Kelly Berishaj;Melissa Mcdonald;Michele Parkhill;Dongxiao Zhu;Douglas Zytko - 通讯作者:
Douglas Zytko
MFABA: A More Faithful and Accelerated Boundary-based Attribution Method for Deep Neural Networks
MFABA:一种更忠实、更加速的深度神经网络基于边界的归因方法
- DOI:
10.48550/arxiv.2312.13630 - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
Zhiyu Zhu;Huaming Chen;Jiayu Zhang;Xinyi Wang;Zhibo Jin;Minhui Xue;Dongxiao Zhu;Kim - 通讯作者:
Kim
Towards Trauma-Informed Data Donation of Sexual Experience in Online Dating to Improve Sexual Risk Detection AI
致力于在线约会中性经历的创伤知情数据捐赠,以改进性风险检测人工智能
- DOI:
10.1145/3586182.3616689 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wenqi Zheng;Emma Walquist;Isha Datey;Xiangyu Zhou;Kelly Berishaj;Melissa Mcdonald;Michele Parkhill;Dongxiao Zhu;Douglas Zytko - 通讯作者:
Douglas Zytko
Benchmark and Neural Architecture for Conversational Entity Retrieval from a Knowledge Graph
从知识图进行会话实体检索的基准和神经架构
- DOI:
10.1145/3589334.3645676 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mona Zamiri;Yao Qiang;Fedor Nikolaev;Dongxiao Zhu;Alexander Kotov - 通讯作者:
Alexander Kotov
Mechanical evolution of metastatic cancer cells in three-dimensional microenvironment
三维微环境中转移癌细胞的机械演化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Karlin Hilai;Daniil Grubich;Marcus Akrawi;Hui Zhu;Razanne Zaghloul;Chenjun Shi;Man Do;Dongxiao Zhu;Jitao Zhang - 通讯作者:
Jitao Zhang
Dongxiao Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongxiao Zhu', 18)}}的其他基金
NSF Convergence Accelerator Track H: Leveraging Human-Centered AI Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment for Persons with Disabilities
NSF 融合加速器轨道 H:利用以人为本的人工智能微交通改善残疾人住房和就业之间的时空不匹配
- 批准号:
2235225 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
- 批准号:
2211897 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
EAGER: A Novel Algorithmic Framework for Discovering Subnetworks from Big Biological Data
EAGER:一种从生物大数据中发现子网络的新颖算法框架
- 批准号:
1451316 - 财政年份:2014
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
相似海外基金
SCC-PG: Trust, transparency and technology: Building digital equity through a civic digital commons
SCC-PG:信任、透明度和技术:通过公民数字共享建立数字公平
- 批准号:
2234081 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-PG 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
- 批准号:
2228311 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Youth-Centered Civic Technology and Citizen Science for Improving Community Heat Resilience Infrastructure
SCC-CIVIC-PG 轨道 A:以青年为中心的公民技术和公民科学,用于改善社区耐热基础设施
- 批准号:
2228553 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Ocean Model Infrastructure For A Resilient Coastal City
SCC-CIVIC-PG 轨道 A:弹性沿海城市的海洋模型基础设施
- 批准号:
2228535 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Full Building Scans for Targeted Micro-retrofits using Drones, Radars, and Deep Learning
SCC-CIVIC-PG 轨道 A:使用无人机、雷达和深度学习进行全面建筑扫描以进行有针对性的微型改造
- 批准号:
2228568 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: A Coordinated Food Hub Network and Farm to Institution Program: Building Bridges between Small Local Farmers and Institutions in New York State Capital Region
SCC-CIVIC-PG 轨道 B:协调的食品中心网络和农场到机构计划:在纽约州首府地区当地小农民和机构之间架起桥梁
- 批准号:
2228544 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B Design for Community Resilience: Participatory Civic Technology to Close the Last-Mile Disaster Relief Gap in Puerto Rico
SCC-CIVIC-PG 社区复原力 B 轨设计:参与式公民技术缩小波多黎各最后一英里的救灾差距
- 批准号:
2228635 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Everyday Respect: Measuring & Improving Police Officer Communication During Motor Vehicle Stops
SCC-CIVIC-PG 轨道 B:日常尊重:测量
- 批准号:
2228785 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Community Informed AI-Based System for Driver Training to Advance Neurodiverse Independence and Employment
SCC-CIVIC-PG 轨道 B:社区知情的基于人工智能的驾驶员培训系统,以促进神经多样化的独立和就业
- 批准号:
2228370 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Enhancing the Capacity for Environmental and Social Resiliency in Overburdened Communities
SCC-CIVIC-PG 轨道 A:增强负担过重的社区的环境和社会复原能力
- 批准号:
2228377 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant