Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
基本信息
- 批准号:2329765
- 负责人:
- 金额:$ 56.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnetized plasmas, a combination of superheated gas and magnetic fields, are pervasive in our universe and are responsible for some of the grandest natural phenomena, such as the aurora. Plasmas are also extensively studied for engineering and industrial applications, such as space propulsion and development of future fusion energy reactors. This project aims to improve our ability to understand and predict the behavior of magnetized plasmas using simplified models that are both fast and easy to use. In particular, this investigation will explore methods that combine machine learning techniques that are revolutionizing many fields, like self-driving cars, with the known physical laws that govern magnetized plasmas - seeking to leverage the best aspects of each individual approach.This project will advance data-driven modeling approaches such as machine learning by utilizing physics-informed constraints for magnetized plasmas in three ways: 1) Several emerging data decomposition methods will be applied to numerical simulations of magnetized plasmas for the first time and assessed for these systems; 2) Data-driven nonlinear models based on these decompositions will be tested for modeling magnetized plasmas with significantly increased speed compared to classical approaches; 3) Methods to optimize the placement of sensors to diagnose magnetized plasmas will be evaluated to improve the value of measurements used to both observe plasmas and as the source of information to build data-driven models. Together these three studies will advance the effectiveness of low-dimensional, nonlinear, and interpretable data-driven methods for achieving new physical insight, improved prediction, and robust control of multi-scale magnetized plasmas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
磁化等离子体是过热气体和磁场的组合,在我们的宇宙中无处不在,并导致了一些最壮观的自然现象,如极光。 等离子体在工程和工业应用中也得到了广泛的研究,例如空间推进和未来聚变能反应堆的发展。 该项目旨在提高我们理解和预测磁化等离子体行为的能力,使用简化的模型,既快速又易于使用。特别是,这项研究将探索将联合收割机机器学习技术与已知的磁化等离子体物理定律相结合的方法,这些技术正在彻底改变许多领域,如自动驾驶汽车,并寻求利用每种方法的最佳方面。该项目将通过三种方式利用磁化等离子体的物理约束来推进数据驱动的建模方法,如机器学习:1)几种新兴的数据分解方法将首次应用于磁化等离子体的数值模拟,并对这些系统进行评估; 2)基于这些分解的数据驱动非线性模型将被测试用于建模磁化等离子体,与经典方法相比,速度显着增加; 3)将评估优化传感器位置以诊断磁化等离子体的方法,以提高用于观察等离子体和作为建立数据驱动模型的信息来源的测量值。这三项研究将共同提高低维、非线性和可解释的数据驱动方法的有效性,以实现新的物理见解、改进的预测和多尺度磁化等离子体的鲁棒控制。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Promoting global stability in data-driven models of quadratic nonlinear dynamics
- DOI:10.1103/physrevfluids.6.094401
- 发表时间:2021-05
- 期刊:
- 影响因子:2.7
- 作者:A. Kaptanoglu;Jared L. Callaham;A. Aravkin;C. Hansen;S. Brunton
- 通讯作者:A. Kaptanoglu;Jared L. Callaham;A. Aravkin;C. Hansen;S. Brunton
Sparse regression for plasma physics
- DOI:10.1063/5.0139039
- 发表时间:2023-03-01
- 期刊:
- 影响因子:2.2
- 作者:Kaptanoglu,Alan A.;Hansen,Christopher;Brunton,Steven L.
- 通讯作者:Brunton,Steven L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Hansen其他文献
VARIATION IN SOFA SCORE PERFORMANCE IN DIFFERENT INFECTIOUS STATES
- DOI:
10.1016/j.chest.2020.08.641 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Rahul Pawar;Jenny Shih;Lakshman Balaji;Anne Grossestreuer;Parth Patel;Christopher Hansen;Michael Donnino;Ari Moskowitz - 通讯作者:
Ari Moskowitz
An optical-input Maximum Likelihood Estimation feedback system demonstrated on tokamak horizontal equilibrium control
- DOI:
10.1016/j.fusengdes.2023.113565 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Rian Chandra;Jeffrey Levesque;Yumou Wei;Boting Li;Alex Saperstein;Ian Stewart;Christopher Hansen;Michael Mauel;Gerald Navratil - 通讯作者:
Gerald Navratil
When to Text? How the Timing of Text Message Contacts in Mixed-Mode Surveys Impacts Response
什么时候发短信?
- DOI:
10.1093/jssam/smae014 - 发表时间:
2024 - 期刊:
- 影响因子:2.1
- 作者:
Leah Melani Christian;Hanyu Sun;Zoe Slowinski;Christopher Hansen;Martha McRoy - 通讯作者:
Martha McRoy
Are Family Firms Doing More Innovation Output With Less Innovation Input? A Replication and Extension
家族企业是否能以更少的创新投入获得更多的创新产出?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Block;Christopher Hansen;Holger Steinmetz - 通讯作者:
Holger Steinmetz
The Longitudinal Measurement of Sexual Orientation and Gender Identity: A Study of Identity Change in a Nationally Representative Sample of U.S. Adults and Adolescents.
性取向和性别认同的纵向测量:美国成年人和青少年全国代表性样本的身份变化研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Christopher Hansen;Melissa Heim Viox;Erin M Fordyce;Michelle M. Johns;Sabrina Avripas;Stuart Michaels - 通讯作者:
Stuart Michaels
Christopher Hansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Hansen', 18)}}的其他基金
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2108384 - 财政年份:2021
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
Student Poster Symposium at the ASME International Mechanical Engineering Congress and Exposition (ASME-IMECE); San Diego California; November 15-21, 2013
ASME 国际机械工程大会暨博览会 (ASME-IMECE) 学生海报研讨会;
- 批准号:
1343049 - 财政年份:2013
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Student Poster Symposium at the ASME International Mechanical Engineering Congress and Exposition (ASME-IMECE) 2012; Houston, Texas; 9-15 November 2012
2012 年 ASME 国际机械工程大会暨博览会 (ASME-IMECE) 学生海报研讨会;
- 批准号:
1247490 - 财政年份:2012
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
相似海外基金
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
- 批准号:
BB/Y008758/1 - 财政年份:2024
- 资助金额:
$ 56.99万 - 项目类别:
Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
- 批准号:
2321840 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
- 批准号:
2239787 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
Interpretable Machine Learning Modelling of Future Extreme Floods under Climate Change
气候变化下未来极端洪水的可解释机器学习模型
- 批准号:
2889015 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Studentship
Macroeconomic structural changes and their characteristics: Applications of interpretable machine learning
宏观经济结构变化及其特征:可解释机器学习的应用
- 批准号:
23K01319 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Interpretable machine learning to synergize brain age estimation and neuroimaging genetics
可解释的机器学习可协同大脑年龄估计和神经影像遗传学
- 批准号:
10568234 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2343869 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
- 批准号:
10822625 - 财政年份:2023
- 资助金额:
$ 56.99万 - 项目类别: