CAREER: Scalable Algorithmic Primitives for Data Science
职业:数据科学的可扩展算法原语
基本信息
- 批准号:2330255
- 负责人:
- 金额:$ 45.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to improve some of the most fundamental algorithms in computing: solving systems of linear equations, optimization on graphs, and maintaining dynamically changing networks. Tools for solving these problems are integral components of high-level programming languages such as MATLAB and Julia, and are frequently taught as basic programming constructs in courses on machine learning, statistics, and data science. Improved algorithms for these problems can provide faster, more robust, and easier-to-use algorithmic primitives, which would in turn enable computing on larger and more diverse data sets in areas such as data mining, image processing, scientific computing, and network science. The proposed works will actively involve graduate students, and their results will be incorporated into courses at both graduate and undergraduate levels. The project will also support the PI's long-time involvement with algorithmic problem-solving outreach activities, with a focus on making these activities more accessible to underrepresented groups, and institutionalizing the involvement of graduate students. The problems that this project proposes to study, linear system solvers and optimization on graphs, are some of the most well-studied problems in algorithm design. Previous work on these topics led to many widely-used algorithms and data structures. The main approach of this project is motivated by progress on combining numerical and combinatorial algorithmic primitives through the graph Laplacian matrix, known as the `Laplacian paradigm' for designing graph algorithms. Recent and ongoing work by the PI and collaborators led to the current best algorithms for many key problems involving graph Laplacians, and more importantly, significantly broadened the scope of problems addressed. An underlying theme in these results is that the most powerful tools work with intermediate algorithmic states, and the focus of this project is a more in-depth study of this phenomenon using ideas from data structures, which also construct and reuse intermediate algorithmic states. These directions of investigation will lead to new algorithmic constructs, give improved tools for computing on static and dynamic data, and enable new applications based on computations on graphs and matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在改进计算中的一些最基本的算法:解线性方程组、图上的优化以及维护动态变化的网络。用于解决这些问题的工具是高级编程语言(如MatLab和Julia)的组成部分,并且经常作为基本编程结构在机器学习、统计和数据科学课程中教授。针对这些问题的改进算法可以提供更快、更健壮和更易于使用的算法原语,这反过来将使在数据挖掘、图像处理、科学计算和网络科学等领域的更大和更多样化的数据集上进行计算。拟议的工作将积极吸引研究生参与,他们的成果将纳入研究生和本科生的课程。该项目还将支持PI长期参与解决算法问题的外联活动,重点是使代表人数不足的群体更容易参与这些活动,并使研究生的参与制度化。这个项目提出要研究的问题,线性系统解算器和图上的优化,是算法设计中研究最充分的一些问题。以前在这些主题上的工作导致了许多广泛使用的算法和数据结构。这个项目的主要方法是通过图形拉普拉斯矩阵将数字和组合算法基元结合起来的进展,该矩阵被称为用于设计图形算法的“拉普拉斯范例”。PI和合作者最近和正在进行的工作导致了当前许多涉及图拉普拉斯的关键问题的最佳算法,更重要的是,显著地拓宽了所解决的问题的范围。这些结果中的一个潜在主题是,最强大的工具与中间算法状态一起工作,本项目的重点是使用数据结构中的思想对这一现象进行更深入的研究,数据结构也构建和重用中间算法状态。这些研究方向将导致新的算法构造,提供改进的静态和动态数据计算工具,并实现基于图形和矩阵计算的新应用程序。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exponential Convergence of Sinkhorn Under Regularization Scheduling
- DOI:10.48550/arxiv.2207.00736
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Jingbang Chen;Yang P. Liu;Richard Peng;Arvind Ramaswami
- 通讯作者:Jingbang Chen;Yang P. Liu;Richard Peng;Arvind Ramaswami
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Peng其他文献
The preventive effect of garlicin on a porcine model of myocardial infarction reperfusion no-reflow
- DOI:
10.1007/s11655-012-1091-1 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Li Jia-hui;Yang Peng;Li Xian-lun - 通讯作者:
Li Xian-lun
Comparison of Polyaxial or Poly/Monoaxial Mixed Screw Fixation for Treatment of Thoracolumbar Fractures with O -Arm Navigation: A Case-Control Study
O 形臂导航多轴或多轴混合螺钉固定治疗胸腰椎骨折的比较:病例对照研究
- DOI:
10.1016/j.wneu.2020.01.123 - 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
Qin Wanjin;Chen Kangwu;Chen Hao;Yang Peng;Yang Huilin;Mao Haiqing - 通讯作者:
Mao Haiqing
Impact of the 2017 ACC/AHA Guideline for High Blood Pressure on Evaluating Gestational Hypertension-Associated Risks for Newborns and Mothers
2017 年 ACC/AHA 高血压指南对评估新生儿和母亲妊娠期高血压相关风险的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:20.1
- 作者:
Jie Hu;Yuanyuan Li;Bin Zhang;Tongzhang Zheng;Jun Li;Yang Peng;Aifen Zhou;Stephen L. Buka;Simin Liu;Yiming Zhang;Kunchong Shi;Wei Xia;Kathryn M. Rexrode;Shunqing Xu - 通讯作者:
Shunqing Xu
Electrolyte-Gated Indium Oxide Thin Film Transistor Based Biosensor With Low Operation Voltage
具有低工作电压的基于电解质门控氧化铟薄膜晶体管的生物传感器
- DOI:
10.1109/ted.2019.2920990 - 发表时间:
2019-08 - 期刊:
- 影响因子:3.1
- 作者:
Yang Peng;Cai Guangshuo;Wang Xinzhong;Pei Yanli - 通讯作者:
Pei Yanli
Research on PSO algorithm in neural network generalization
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yang Peng - 通讯作者:
Yang Peng
Yang Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Peng', 18)}}的其他基金
CSUN/Caltech-IQIM Partnership
CSUN/加州理工学院-IQIM 合作伙伴关系
- 批准号:
2216774 - 财政年份:2022
- 资助金额:
$ 45.65万 - 项目类别:
Continuing Grant
CAREER: Scalable Algorithmic Primitives for Data Science
职业:数据科学的可扩展算法原语
- 批准号:
1846218 - 财政年份:2019
- 资助金额:
$ 45.65万 - 项目类别:
Continuing Grant
AF: Small: New Algorithmic Primitives for Directed Graphs: Sparsification and Preconditioning
AF:小:有向图的新算法基元:稀疏化和预处理
- 批准号:
1718533 - 财政年份:2017
- 资助金额:
$ 45.65万 - 项目类别:
Standard Grant
AitF: Collaborative Research: High Performance Linear System Solvers with Focus on Graph Laplacians
AitF:协作研究:关注图拉普拉斯算子的高性能线性系统求解器
- 批准号:
1637566 - 财政年份:2016
- 资助金额:
$ 45.65万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable Quantum Machine Learning with NISQ Devices: Theoretic and Algorithmic Foundations
使用 NISQ 设备的可扩展量子机器学习:理论和算法基础
- 批准号:
2882984 - 财政年份:2023
- 资助金额:
$ 45.65万 - 项目类别:
Studentship
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
- 批准号:
10400413 - 财政年份:2021
- 资助金额:
$ 45.65万 - 项目类别:
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
- 批准号:
10555237 - 财政年份:2021
- 资助金额:
$ 45.65万 - 项目类别:
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
- 批准号:
10331823 - 财政年份:2021
- 资助金额:
$ 45.65万 - 项目类别:
CAREER: Scalable Software and Algorithmic Infrastructure for Probabilistic Graphical Modeling
职业:用于概率图形建模的可扩展软件和算法基础设施
- 批准号:
1845840 - 财政年份:2019
- 资助金额:
$ 45.65万 - 项目类别:
Continuing Grant
CAREER: Scalable Algorithmic Primitives for Data Science
职业:数据科学的可扩展算法原语
- 批准号:
1846218 - 财政年份:2019
- 资助金额:
$ 45.65万 - 项目类别:
Continuing Grant
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
- 批准号:
1660686 - 财政年份:2016
- 资助金额:
$ 45.65万 - 项目类别:
Continuing Grant
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
- 批准号:
1415461 - 财政年份:2014
- 资助金额:
$ 45.65万 - 项目类别:
Continuing Grant
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
- 批准号:
1415537 - 财政年份:2014
- 资助金额:
$ 45.65万 - 项目类别:
Continuing Grant
TWC: TTP Option: Small: Collaborative: Scalable Techniques for Better Situational Awareness: Algorithmic Frameworks and Large-Scale Empirical Analyses
TWC:TTP 选项:小型:协作:可扩展技术以实现更好的态势感知:算法框架和大规模实证分析
- 批准号:
1421747 - 财政年份:2014
- 资助金额:
$ 45.65万 - 项目类别:
Standard Grant














{{item.name}}会员




