CAREER: Scalable Algorithmic Primitives for Data Science

职业:数据科学的可扩展算法原语

基本信息

  • 批准号:
    2330255
  • 负责人:
  • 金额:
    $ 45.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project aims to improve some of the most fundamental algorithms in computing: solving systems of linear equations, optimization on graphs, and maintaining dynamically changing networks. Tools for solving these problems are integral components of high-level programming languages such as MATLAB and Julia, and are frequently taught as basic programming constructs in courses on machine learning, statistics, and data science. Improved algorithms for these problems can provide faster, more robust, and easier-to-use algorithmic primitives, which would in turn enable computing on larger and more diverse data sets in areas such as data mining, image processing, scientific computing, and network science. The proposed works will actively involve graduate students, and their results will be incorporated into courses at both graduate and undergraduate levels. The project will also support the PI's long-time involvement with algorithmic problem-solving outreach activities, with a focus on making these activities more accessible to underrepresented groups, and institutionalizing the involvement of graduate students. The problems that this project proposes to study, linear system solvers and optimization on graphs, are some of the most well-studied problems in algorithm design. Previous work on these topics led to many widely-used algorithms and data structures. The main approach of this project is motivated by progress on combining numerical and combinatorial algorithmic primitives through the graph Laplacian matrix, known as the `Laplacian paradigm' for designing graph algorithms. Recent and ongoing work by the PI and collaborators led to the current best algorithms for many key problems involving graph Laplacians, and more importantly, significantly broadened the scope of problems addressed. An underlying theme in these results is that the most powerful tools work with intermediate algorithmic states, and the focus of this project is a more in-depth study of this phenomenon using ideas from data structures, which also construct and reuse intermediate algorithmic states. These directions of investigation will lead to new algorithmic constructs, give improved tools for computing on static and dynamic data, and enable new applications based on computations on graphs and matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在改进计算中一些最基本的算法:求解线性方程组,图形优化和维护动态变化的网络。用于解决这些问题的工具是高级编程语言(如MATLAB和Julia)的组成部分,并且经常在机器学习,统计学和数据科学课程中作为基本编程结构教授。针对这些问题的改进算法可以提供更快、更鲁棒和更易于使用的算法原语,这反过来又可以在数据挖掘、图像处理、科学计算和网络科学等领域中对更大和更多样化的数据集进行计算。拟议的工作将积极参与研究生,他们的成果将纳入研究生和本科生的课程。该项目还将支持PI长期参与算法解决问题的外展活动,重点是使这些活动更容易为代表性不足的群体所接受,并使研究生的参与制度化。这个项目提出要研究的问题,线性系统解算器和图上的优化,是算法设计中研究最多的问题。以前对这些主题的工作导致了许多广泛使用的算法和数据结构。该项目的主要方法是通过图形拉普拉斯矩阵结合数值和组合算法原语的进展,称为设计图形算法的“拉普拉斯范式”。PI和合作者最近和正在进行的工作为涉及图拉普拉斯算子的许多关键问题带来了当前最好的算法,更重要的是,大大拓宽了解决问题的范围。这些结果的一个基本主题是,最强大的工具与中间算法状态一起工作,该项目的重点是使用数据结构中的思想对这种现象进行更深入的研究,这些数据结构也构建和重用中间算法状态。这些研究方向将导致新的算法结构,为静态和动态数据的计算提供改进的工具,并使基于图形和矩阵计算的新应用成为可能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exponential Convergence of Sinkhorn Under Regularization Scheduling
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Peng其他文献

Durable Response and Good Tolerance to the Triple Combination of Toripalimab, Gemcitabine, and Nab-Paclitaxel in a Patient With Metastatic Pancreatic Ductal Adenocarcinoma
特瑞普利单抗、吉西他滨和白蛋白结合型紫杉醇三联疗法在转移性胰腺导管腺癌患者中的持久反应和良好耐受性
  • DOI:
    10.3389/fimmu.2020.01127
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Cheng Yi;Xiaofen Li;Dan Cao;Lin Shui;Ke Cheng;Jian Li;Yang Peng;Pixian Shui;Fengzhu Guo;Shuangshuang Li
  • 通讯作者:
    Shuangshuang Li
The interactions between an off-road tire and granular terrain: GPU-based DEM-FEM simulation and experimental validation
越野轮胎与粒状地形之间的相互作用:基于 GPU 的 DEM-FEM 模拟和实验验证
Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space
容许空间内半线性非瞬时脉冲抛物线方程的惯性流形
Characteristic and preparation of Ce0.5Zr0.5O2 as the anode support for solid oxide fuel cells by phase inversion technology
相转化技术制备固体氧化物燃料电池阳极载体Ce0.5Zr0.5O2的特性及制备
  • DOI:
    10.1016/j.ijhydene.2015.07.121
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Feng Jie;Qiao Jinshuo;Sun Wang;Yang Peng;Li Haiyang;Wang Zhenhua;Sun Kening
  • 通讯作者:
    Sun Kening
Time-Constrained Big Data Transfer for SDN-Enabled Smart City
支持 SDN 的智能城市的时间受限大数据传输
  • DOI:
    10.1109/mcom.2017.1700236
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Bi Yuanguo;Lin Chuan;Zhou Haibo;Yang Peng;Shen Xuemin;Zhao Hai
  • 通讯作者:
    Zhao Hai

Yang Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Peng', 18)}}的其他基金

CSUN/Caltech-IQIM Partnership
CSUN/加州理工学院-IQIM 合作伙伴关系
  • 批准号:
    2216774
  • 财政年份:
    2022
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Algorithmic Primitives for Data Science
职业:数据科学的可扩展算法原语
  • 批准号:
    1846218
  • 财政年份:
    2019
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
AF: Small: New Algorithmic Primitives for Directed Graphs: Sparsification and Preconditioning
AF:小:有向图的新算法基元:稀疏化和预处理
  • 批准号:
    1718533
  • 财政年份:
    2017
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: High Performance Linear System Solvers with Focus on Graph Laplacians
AitF:协作研究:关注图拉普拉斯算子的高性能线性系统求解器
  • 批准号:
    1637566
  • 财政年份:
    2016
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable Quantum Machine Learning with NISQ Devices: Theoretic and Algorithmic Foundations
使用 NISQ 设备的可扩展量子机器学习:理论和算法基础
  • 批准号:
    2882984
  • 财政年份:
    2023
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Studentship
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
  • 批准号:
    10555237
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
  • 批准号:
    10400413
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
Link, transport, integrate: a Bayesian data integration framework for scalable algorithmic dementia classification in population-representative studies
链接、传输、集成:用于人口代表性研究中可扩展算法痴呆分类的贝叶斯数据集成框架
  • 批准号:
    10331823
  • 财政年份:
    2021
  • 资助金额:
    $ 45.65万
  • 项目类别:
CAREER: Scalable Software and Algorithmic Infrastructure for Probabilistic Graphical Modeling
职业:用于概率图形建模的可扩展软件和算法基础设施
  • 批准号:
    1845840
  • 财政年份:
    2019
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Algorithmic Primitives for Data Science
职业:数据科学的可扩展算法原语
  • 批准号:
    1846218
  • 财政年份:
    2019
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
  • 批准号:
    1660686
  • 财政年份:
    2016
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
  • 批准号:
    1415461
  • 财政年份:
    2014
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
  • 批准号:
    1415537
  • 财政年份:
    2014
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Continuing Grant
TWC: TTP Option: Small: Collaborative: Scalable Techniques for Better Situational Awareness: Algorithmic Frameworks and Large-Scale Empirical Analyses
TWC:TTP 选项:小型:协作:可扩展技术以实现更好的态势感知:算法框架和大规模实证分析
  • 批准号:
    1421747
  • 财政年份:
    2014
  • 资助金额:
    $ 45.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了