AitF: Collaborative Research: High Performance Linear System Solvers with Focus on Graph Laplacians
AitF:协作研究:关注图拉普拉斯算子的高性能线性系统求解器
基本信息
- 批准号:1637566
- 负责人:
- 金额:$ 26.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fast and robust solvers for systems of linear equations are the work horse of many communities in the sciences, engineering, business, and industry. Few pieces of software are so important of all these areas. Recent theoretical progress on efficient solvers for special cases of linear systems, including Symmetric Diagonally Dominant matrices, have sparked a renaissance in faster algorithms for wide classes of optimization problems that have not seen improvements in many years.The main goal of this project is to take the next step to find and implement fast robust solvers that work in seconds on systems that are a factor of 100 to 1000 times larger than is now possible on a modern large workstation. For the applications mentioned above the solver may be called 100s or 1000s times for a single run. As a result, such a solver needs to meet several important requirements: 1) it must be robust enough to not need human intervention between these runs; 2) it must be fast enough to finish all work in a reasonable amount of time. 3) it must be able to handle the very different systems of equations that arise in applications.This project aims to bridge the theoretical and practical aspects of designing efficient and robust solvers for linear systems in graph Laplacians. The PIs plan to develop code packages that have good practical performances as well as provable guarantees in the worst case. Doing so requires them to address a range of issues arising from numerical analysis, combinatorics, high performance computing, and data structures.They plan to address shortcomings of existing packages for solving linear systems in graph Laplacians, specifically their robustness in the presence of widely varying edge weights. Resolving this issue is crucial for bridging the theory and practice of incorporating these solvers in optimization algorithms such as iterative least squares, mirror descent, and interior point methods. Specifically, they will study a variety of theoretical algorithmic tools from the perspective of high performance computing, focusing on topics at the core of data structures, high performance computing, numerical analysis, scientific computing, and graph theory. Progresses on them have the potential of opening up novel lines of investigations on well-studied topics for the team and the students that they will train.
线性方程组的快速和鲁棒求解器是科学,工程,商业和工业中许多社区的工作。在所有这些领域中,很少有软件如此重要。最近的理论进展,有效的求解器的特殊情况下的线性系统,包括对称对角占优矩阵,已经引发了快速算法的复兴,这些算法用于许多年来没有改进的广泛类别的优化问题。该项目的主要目标是采取下一步行动,找到并实现快速鲁棒的求解器,这些求解器在100到1000倍的系统上在几秒钟内工作比现在现代大型工作站上可能的大一倍。对于上面提到的应用,求解器可以在单次运行中被调用100或1000次。因此,这样的求解器需要满足几个重要的要求:1)它必须足够健壮,在这些运行之间不需要人为干预; 2)它必须足够快,可以在合理的时间内完成所有工作。3)它必须能够处理在应用中出现的非常不同的方程系统。这个项目旨在为图拉普拉斯算子中的线性系统设计高效和鲁棒的求解器的理论和实践方面搭建桥梁。PI计划开发具有良好实际性能的代码包,以及在最坏情况下的可证明保证。这样做需要他们解决一系列的问题所产生的数值分析,组合学,高性能计算,和数据结构。他们计划解决现有的软件包的缺点,用于解决线性系统的图拉普拉斯算子,特别是他们的鲁棒性在广泛变化的边权重的存在。解决这个问题是至关重要的桥梁的理论和实践,将这些求解器在优化算法,如迭代最小二乘法,镜像下降,和内点方法。具体而言,他们将从高性能计算的角度研究各种理论算法工具,重点关注数据结构,高性能计算,数值分析,科学计算和图论的核心主题。他们的进展有可能为团队和他们将要培训的学生开辟关于研究课题的新的调查路线。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Faster Graph Embeddings via Coarsening
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Matthew Fahrbach;Gramoz Goranci;Richard Peng;Sushant Sachdeva;Chi Wang-
- 通讯作者:Matthew Fahrbach;Gramoz Goranci;Richard Peng;Sushant Sachdeva;Chi Wang-
Hardness Results for Structured Linear Systems
结构化线性系统的硬度结果
- DOI:10.1109/focs.2017.69
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Kyng, Rasmus;Zhang, Peng
- 通讯作者:Zhang, Peng
Incomplete nested dissection
不完整的嵌套解剖
- DOI:10.1145/3188745.3188960
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kyng, Rasmus;Peng, Richard;Schwieterman, Robert;Zhang, Peng
- 通讯作者:Zhang, Peng
Current Flow Group Closeness Centrality for Complex Networks?
- DOI:10.1145/3308558.3313490
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Huan Li;Richard Peng;Liren Shan;Yuhao Yi;Zhongzhi Zhang
- 通讯作者:Huan Li;Richard Peng;Liren Shan;Yuhao Yi;Zhongzhi Zhang
Optimal Offline Dynamic 2, 3-Edge/Vertex Connectivity
最佳离线动态 2、3 边/顶点连接
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Peng, Richard;Sandlund, Bryce;Sleator, Daniel D
- 通讯作者:Sleator, Daniel D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Peng其他文献
The preventive effect of garlicin on a porcine model of myocardial infarction reperfusion no-reflow
- DOI:
10.1007/s11655-012-1091-1 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Li Jia-hui;Yang Peng;Li Xian-lun - 通讯作者:
Li Xian-lun
Comparison of Polyaxial or Poly/Monoaxial Mixed Screw Fixation for Treatment of Thoracolumbar Fractures with O -Arm Navigation: A Case-Control Study
O 形臂导航多轴或多轴混合螺钉固定治疗胸腰椎骨折的比较:病例对照研究
- DOI:
10.1016/j.wneu.2020.01.123 - 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
Qin Wanjin;Chen Kangwu;Chen Hao;Yang Peng;Yang Huilin;Mao Haiqing - 通讯作者:
Mao Haiqing
Impact of the 2017 ACC/AHA Guideline for High Blood Pressure on Evaluating Gestational Hypertension-Associated Risks for Newborns and Mothers
2017 年 ACC/AHA 高血压指南对评估新生儿和母亲妊娠期高血压相关风险的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:20.1
- 作者:
Jie Hu;Yuanyuan Li;Bin Zhang;Tongzhang Zheng;Jun Li;Yang Peng;Aifen Zhou;Stephen L. Buka;Simin Liu;Yiming Zhang;Kunchong Shi;Wei Xia;Kathryn M. Rexrode;Shunqing Xu - 通讯作者:
Shunqing Xu
Electrolyte-Gated Indium Oxide Thin Film Transistor Based Biosensor With Low Operation Voltage
具有低工作电压的基于电解质门控氧化铟薄膜晶体管的生物传感器
- DOI:
10.1109/ted.2019.2920990 - 发表时间:
2019-08 - 期刊:
- 影响因子:3.1
- 作者:
Yang Peng;Cai Guangshuo;Wang Xinzhong;Pei Yanli - 通讯作者:
Pei Yanli
Research on PSO algorithm in neural network generalization
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yang Peng - 通讯作者:
Yang Peng
Yang Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Peng', 18)}}的其他基金
CSUN/Caltech-IQIM Partnership
CSUN/加州理工学院-IQIM 合作伙伴关系
- 批准号:
2216774 - 财政年份:2022
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
CAREER: Scalable Algorithmic Primitives for Data Science
职业:数据科学的可扩展算法原语
- 批准号:
2330255 - 财政年份:2022
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
CAREER: Scalable Algorithmic Primitives for Data Science
职业:数据科学的可扩展算法原语
- 批准号:
1846218 - 财政年份:2019
- 资助金额:
$ 26.67万 - 项目类别:
Continuing Grant
AF: Small: New Algorithmic Primitives for Directed Graphs: Sparsification and Preconditioning
AF:小:有向图的新算法基元:稀疏化和预处理
- 批准号:
1718533 - 财政年份:2017
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
相似海外基金
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
2051197 - 财政年份:2020
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1940759 - 财政年份:2019
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733812 - 财政年份:2018
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1854742 - 财政年份:2018
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733680 - 财政年份:2018
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
1855760 - 财政年份:2018
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
- 批准号:
1733742 - 财政年份:2017
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733796 - 财政年份:2017
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Algorithms and Mechanisms for the Distribution Grid
AitF:协作研究:配电网算法和机制
- 批准号:
1733832 - 财政年份:2017
- 资助金额:
$ 26.67万 - 项目类别:
Standard Grant














{{item.name}}会员




