Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
基本信息
- 批准号:2331017
- 负责人:
- 金额:$ 20.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports research to pursue a fundamental understanding of adsorption-deformation coupling in soft nanoporous materials. The research will develop corresponding mechanical theories, aiming to better predict hygroscopic movements in complex nanoporous media and control sorption-induced actuation by design where sorption refers to the binding of ions to charged surfaces. Soft nanoporous materials having characteristic pore sizes below 100 nm are ubiquitous in nature (e.g., cellulose, protein) and in engineering applications (e.g., cement, gel, nanocomposites). These materials often exhibit significant swelling/shrinkage upon adsorption/desorption of fluids/gases due to nanoconfinement effects resulting from their network topology and interfacial interactions. Nature uses such stimuli-responsive features of cellulose nanofibers to facilitate the dispersal of plant seeds upon humidity change. Bio-inspired soft nanoporous materials have been recently developed for fast and reliable actuators, sensors, and artificial muscles driven by sorption of solvent molecules. This project will establish and validate a multiscale mechanics framework informed by pore-scale thermodynamics and molecular simulations for predicting the sorption-induced straining of nanoporous materials. The project will also pursue an educational initiative involving new course development on multiscale poromechanics and pre-college outreach by harnessing the excitement surrounding nano-engineered materials and leveraging it with the exceptional infrastructure for innovation and education at the participating institutes. This research is driven by the hypothesis that the complex coupling between sorption and deformation in nanoporous media can be predicted by focusing on two key pore-scale attributions, namely the disjoining pressure and surface tension induced by solid-adsorbate interactions. To test this hypothesis, the study will first establish a continuum theory guided by the thermodynamics of mixtures, i.e., by viewing material as a superposition of the solid, fluid and surface phases, through which the smeared pore-scale forces appear as macroscale adsorption stresses acting on the porous skeleton. Expressions of pore-scale forces will be then sought via molecular dynamics (MD) simulations and surrogate pore models. Specifically, simplified pore models will be developed based on Gibbs’ excess treatment of nanoconfined fluid films to link pore-scale forces induced by sorption with experimentally measurable quantities (i.e., adsorption isotherm). The pore model will be validated by MD simulations of nanopores subjected to fluid adsorption. These microscale forces will then be upscaled via statistical homogenization to complete the poromechanics framework. Finally, the theory will be applied to model the sorption-deformation behavior of amorphous cellulose interacting with water vapor. The prediction will be validated against experimental data and MD simulation results obtained from the same material system. The research will challenge the current paradigm of poromechanics where short-range interactions and surface forces within individual pores have been routinely neglected. If successful, the research will greatly expand our fundamental understanding on mechanics of active and soft porous materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款支持对软纳米多孔材料中的吸附-变形耦合进行基本了解的研究。这项研究将发展相应的力学理论,旨在更好地预测复杂纳米孔介质中的吸湿运动,并通过设计控制吸附诱导的致动,其中吸附是指离子与带电表面的结合。具有低于100 nm特征孔径的软纳米多孔材料在自然界(如纤维素、蛋白质)和工程应用(如水泥、凝胶、纳米复合材料)中普遍存在。由于其网络拓扑和界面相互作用产生的纳米限制效应,这些材料在流体/气体的吸附/解吸过程中经常表现出显著的膨胀/收缩。自然界利用纤维素纳米纤维的这种刺激反应特性来促进植物种子在湿度变化时的传播。生物激发的软纳米多孔材料最近被开发出来,用于快速可靠的致动器、传感器和通过吸附溶剂分子驱动的人造肌肉。这个项目将建立和验证一个多尺度力学框架,该框架由孔尺度热力学和分子模拟提供信息,用于预测纳米多孔材料的吸附诱导应变。该项目还将通过利用围绕纳米工程材料的兴奋,并将其与参与机构的卓越创新和教育基础设施相结合,实施一项教育倡议,涉及多尺度孔力学和大学前推广的新课程开发。这项研究是基于这样一个假设,即纳米多孔介质中的吸附和变形之间的复杂耦合可以通过关注两个关键的孔尺度属性来预测,即固体-吸附相互作用引起的分离压力和表面张力。为了验证这一假设,该研究将首先建立一个以混合物热力学为指导的连续统理论,即通过将材料视为固体、流体和表面相的叠加,通过该相涂抹的孔尺度力表现为作用于多孔骨架的宏观尺度吸附应力。然后将通过分子动力学(MD)模拟和替代孔模型来寻找孔标度力的表达式。具体来说,简化的孔隙模型将基于Gibbs对纳米受限流体薄膜的过度处理,以将吸附诱导的孔隙尺度力与实验可测量的量(即吸附等温线)联系起来。孔模型将通过流体吸附纳米孔的分子动力学模拟来验证。然后,这些微尺度的力将通过统计均化来放大,以完成孔隙力学框架。最后,将该理论应用于无定形纤维素与水蒸气相互作用的吸附-变形行为的模拟。用实验数据和同一材料体系的分子动力学模拟结果对预测结果进行了验证。这项研究将挑战目前的孔隙力学范式,在这种范式中,单个孔隙内的短程相互作用和表面力通常被忽视。如果成功,这项研究将极大地扩展我们对活性和柔软多孔材料力学的基本理解。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dispersion characteristics and mechanical properties of epoxy nanocomposites reinforced with carboxymethyl cellulose functionalized nanodiamond, carbon nanotube, and graphene
- DOI:10.1002/pc.27785
- 发表时间:2023-09
- 期刊:
- 影响因子:5.2
- 作者:Dawei Zhang;Ying Huang;Wenjie Xia;Luyang Xu;Xingyu Wang
- 通讯作者:Dawei Zhang;Ying Huang;Wenjie Xia;Luyang Xu;Xingyu Wang
Influence of Chain Stiffness on the Segmental Dynamics and Mechanical Properties of Cross-Linked Polymers
- DOI:10.1021/acs.macromol.3c01077
- 发表时间:2023-09
- 期刊:
- 影响因子:5.5
- 作者:Xiangrui Zheng;Wenjian Nie;Yafang Guo;Jack F. Douglas;Wenjie Xia
- 通讯作者:Xiangrui Zheng;Wenjian Nie;Yafang Guo;Jack F. Douglas;Wenjie Xia
Particle alignment effects on mechanical properties of cellulose nanocrystal thin films
颗粒排列对纤维素纳米晶薄膜力学性能的影响
- DOI:10.1039/d2ma00870j
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:Son, Hyeyoung;Smith, Dawson Michael;Li, Zhaofan;Chang, Taehoo;Xia, Wenjie;Davis, Chelsea Simone
- 通讯作者:Davis, Chelsea Simone
Understanding the graphene-polymer interfacial mechanical behavior via coarse-grained modeling
- DOI:10.1016/j.commatsci.2023.112109
- 发表时间:2023-04
- 期刊:
- 影响因子:3.3
- 作者:Yang Wang-;W. Nie;Liang-zhi Wang;Dawei Zhang;K. Niu;W. Xia
- 通讯作者:Yang Wang-;W. Nie;Liang-zhi Wang;Dawei Zhang;K. Niu;W. Xia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenjie Xia其他文献
Understanding Activation Volume in Glass-Forming Polymer Melts via Generalized Entropy Theory
通过广义熵理论了解玻璃形成聚合物熔体的活化体积
- DOI:
10.1021/acs.macromol.0c01269 - 发表时间:
2020-08 - 期刊:
- 影响因子:5.5
- 作者:
Wen-Sheng Xu;Jack F. Douglas;Wenjie Xia;Xiaolei Xu - 通讯作者:
Xiaolei Xu
Integrated proteomic profiling identifies amino acids selectively cytotoxic to pancreatic cancer cells
- DOI:
10.1016/j.xinn.2024.100626 - 发表时间:
2024-05-06 - 期刊:
- 影响因子:
- 作者:
Alfred Akinlalu;Zachariah Flaten;Komila Rasuleva;Md Saimon Mia;Aaron Bauer;Santhalingam Elamurugan;Nega Ejjigu;Sudipa Maity;Amara Arshad;Min Wu;Wenjie Xia;Jia Fan;Ang Guo;Sijo Mathew;Dali Sun - 通讯作者:
Dali Sun
Exceptional formaldehyde oxidation at room temperature on Co single-atom functionalized TiOsub2/sub nanowires via highly effective Osub2/sub activation
通过高效的 O₂ 活化,在室温下 Co 单原子功能化的 TiO₂ 纳米线上的卓越甲醛氧化
- DOI:
10.1016/j.apcatb.2023.123634 - 发表时间:
2024-05-05 - 期刊:
- 影响因子:21.100
- 作者:
Lijuan Liu;Guohua Jing;Cibin Xu;Xiaowei Zhang;Xuehong Zhang;Lingyun Guo;Zhiwei Huang;Xiaomin Wu;Huawang Zhao;Chung-Shin Yuan;Huazhen Shen;Wenjie Xia - 通讯作者:
Wenjie Xia
Capturing low-concentration benzene: Design and mechanism of high-performance Cu<sub>1</sub>-O<sub>x</sub>,N<sub>y</sub>-C single-atom adsorbents
- DOI:
10.1016/j.cej.2024.154292 - 发表时间:
2024-09-15 - 期刊:
- 影响因子:
- 作者:
Xiaoru Wang;Lingyun Guo;Xuehong Zhang;Shaowen Zhang;Guohua Jing;Chung-shin Yuan;Huazhen Shen;Wenjie Xia - 通讯作者:
Wenjie Xia
Evaluation and practical application of prompt-driven ChatGPTs for EMR generation
提示驱动的 ChatGPTs 在电子病历生成中的评估与实际应用
- DOI:
10.1038/s41746-025-01472-x - 发表时间:
2025-02-02 - 期刊:
- 影响因子:15.100
- 作者:
Hanlin Ding;Wenjie Xia;Yujia Zhou;Lei Wei;Yipeng Feng;Zi Wang;Xuming Song;Rutao Li;Qixing Mao;Bing Chen;Hui Wang;Xing Huang;Bin Zhu;Dongyu Jiang;Jingyu Sun;Gaochao Dong;Feng Jiang - 通讯作者:
Feng Jiang
Wenjie Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenjie Xia', 18)}}的其他基金
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
- 批准号:
2113558 - 财政年份:2021
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
相似国自然基金
结合粒子滤波空间轨迹优化的炸药装填机器人图像多尺度特征视觉伺服控制研究
- 批准号:JCZRQN202500451
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
强卸荷下土体蠕变的多尺度本构模型及深埋地铁隧道长期服役性能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
异质混杂交通多目标检测的多尺度融合方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多尺度模拟的金属有机框架膜材料脱盐性能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向宽带毫米波天线阵的大规模多尺度高效算法研究
- 批准号:QN25F010031
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
骨骼特异性多尺度模型的高效参数反演方法研究
- 批准号:MS25A020028
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
流场中多尺度Pull型自驱动颗粒聚集行为的研究
- 批准号:QN25A020005
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多尺度表征技术研究晶界工程对氢化钇裂纹扩展的调控机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多尺度形态种子自动化微创取样关键技术研究
- 批准号:2025JJ60212
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
旅游地小企业的创业机会识别、开发及其多尺度影响研究
- 批准号:2025JJ60226
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
- 批准号:
2230435 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
- 批准号:
2316676 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Continuing Grant
CDS&E/Collaborative Research: In-Situ Monitoring-Enabled Multiscale Modeling and Optimization for Environmental and Mechanical Performance of Advanced Manufactured Materials
CDS
- 批准号:
2245107 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant