PRIMES: A Biological and Socio-Environmental Approach to Machine Learning for Equitable and Proactive Cancer and Health Screening

PRIMES:机器学习的生物和社会环境方法,用于公平和主动的癌症和健康筛查

基本信息

  • 批准号:
    2331502
  • 负责人:
  • 金额:
    $ 27.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This project is in collaboration with the Institute for Mathematical and Statistical Innovation (IMSI). The project starts with the participation of the PI in the IMSI fall 2023 long program, entitled Algebraic Statistics and Our Changing World, then continues with a series of three scientific projects along with educational/outreach activities aimed to empower individuals to effectively assess their cancer and health risks, and thus enable us to be proactive in detecting cancer and diseases at earlier stages. Using electronic medical records of patients in Chicago, related to colorectal cancer, lung cancer, and postpartum health outcomes, along with socio-environmental information, a novel and equitable machine learning methodology will be tested and compared to current and broadly used algorithms, to not only predict cancer and health outcomes, but to also study the effect of exposure to violence on our health. The full mathematical and statistical investigation in each of the three research projects (colorectal cancer, lung cancer, and postpartum health outcomes) will not only advance healthcare predictive modeling, but also inform and advance the use of machine learning for an effective, accurate, and unbiased use of predictive modeling in healthcare and beyond. The participation in the IMSI long program will expose the PI to the state of the art of research in related fields and ideas for the future, and will provide adequate time for discussion with workshop participants with the potential to develop new scientific collaborations, and enhance the research of his students and collaborators. The scientific and educational activities will improve the well-being of individuals in society, reduce inequities in society, reduce health distrust among underserved communities, and increase the number of women and underrepresented minorities in STEM in general, and in mathematics and statistics in particular. Scientific evidence is emerging suggesting that societal and neighborhood level factors can elicit a toxic and sustained stress response that promotes biological changes associated with the development of cancers. Using electronic medical records of patients in Chicago related to colorectal, lung, and postpartum cancer/health outcomes, along with socio-environmental information, PI will perform a full investigation of a classification machine learning methodology, i.e., the triple discriminant scoring methodology, and compare its performance to existing and broadly used techniques, such as Extreme Gradient Boosting and Neural Networks. Our preliminary predictive modeling of colorectal adenomas using our triple discriminant scoring methodology, which relies on a high number of simulations and optimization tests across all possible subsets of data variables, showed robustness against change in training data distribution, unlike for the Extreme Gradient Boosting. The three research projects, i.e., predicting colorectal, lung and postpartum cancer/health outcomes, will provide three large electronic medical records data sets on which we will conduct a comprehensive mathematical, statistical and empirical investigation of various machine learning classification methods to extract an effective, accurate, and unbiased use of machine learning in healthcare and beyond. In addition, the PI will participate in the Institute for Mathematical and Statistical Innovation (IMSI) fall 2023 long program, entitled Algebraic Statistics and Our Changing World, to harness and expand his interdisciplinary research, develop new research collaborations, and enhance his students and collaborators research. Finally, scientific and educational activities will improve the well-being of individuals in society, reduce inequities in society, reduce health distrust among underserved communities, and increase the number of women and underrepresented minorities in STEM in general, and in mathematics and statistics in particular.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是与数学和统计创新研究所(IMSI)合作开展的。该项目首先由PI参与IMSI 2023年秋季长期方案,题为“代数统计和我们不断变化的世界”,然后继续开展一系列三个科学项目以及教育/宣传活动,旨在使个人能够有效评估其癌症和健康风险,从而使我们能够在早期阶段积极主动地发现癌症和疾病。使用芝加哥患者的电子医疗记录,与结直肠癌,肺癌和产后健康结果相关,以及社会环境信息,将测试一种新颖而公平的机器学习方法,并与当前广泛使用的算法进行比较,不仅可以预测癌症和健康结果,还可以研究暴露于暴力对我们健康的影响。这三个研究项目(结直肠癌、肺癌和产后健康结果)中的每一个都进行了全面的数学和统计调查,这不仅将推进医疗保健预测建模,而且还将为机器学习的使用提供信息和促进,以便在医疗保健及其他领域有效、准确和公正地使用预测建模。参加IMSI的长期计划将使PI接触到相关领域的研究现状和未来的想法,并将提供足够的时间与有可能发展新的科学合作的研讨会参与者进行讨论,并加强他的学生和合作者的研究。科学和教育活动将改善社会中个人的福祉,减少社会中的不平等现象,减少服务不足社区对健康的不信任,并增加妇女和代表性不足的少数民族在STEM领域的人数,特别是在数学和统计领域。越来越多的科学证据表明,社会和社区水平的因素可以引发有毒和持续的应激反应,从而促进与癌症发展相关的生物学变化。利用芝加哥与结直肠癌、肺癌和产后癌症/健康结果相关的患者电子病历,以及社会环境信息,PI将对分类机器学习方法(即三重判别评分方法)进行全面调查,并将其性能与现有和广泛使用的技术(如极端梯度增强和神经网络)进行比较。我们使用我们的三重判别评分方法对结直肠腺瘤进行初步预测建模,该方法依赖于所有可能的数据变量子集的大量模拟和优化测试,与极端梯度增强不同,该方法对训练数据分布的变化显示出鲁棒性。这三个研究项目,即预测结直肠癌,肺癌和产后癌症/健康结果,将提供三个大型电子病历数据集,我们将对各种机器学习分类方法进行全面的数学,统计和实证调查,以提取机器学习在医疗保健及其他领域的有效,准确和公正的使用。此外,PI将参加数学和统计创新研究所(IMSI) 2023年秋季长期计划,题为“代数统计和我们不断变化的世界”,以利用和扩大他的跨学科研究,发展新的研究合作,并加强他的学生和合作者的研究。最后,科学和教育活动将改善社会中个人的福祉,减少社会中的不平等现象,减少服务不足社区对健康的不信任,并增加STEM中妇女和代表性不足的少数群体的人数,特别是数学和统计。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nabil Kahouadji其他文献

Comparison of Machine Learning Classification Algorithms and Application to the Framingham Heart Study
机器学习分类算法的比较及其在 Framingham 心脏研究中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nabil Kahouadji
  • 通讯作者:
    Nabil Kahouadji

Nabil Kahouadji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
  • 批准号:
    EP/Z532538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 27.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了