Confining photons to atomic length scales

将光子限制在原子长度尺度

基本信息

项目摘要

Localizing photons to atomic length scales offers fascinating possibilities in terms of high-resolution scanning optical microscopy, as well as in terms of strong light-matter coupling. Atomic-scale resolution spectroscopic imaging is expected to have a huge impact in life science as well as in nano science in general. On the other hand, strong coupling in a nanoscale optical resonator with atomic scale mode volume will be of great interest for large scale integration of quantum computation schemes and the implementation of nonlinearities for all-optical data manipulation in the single-photon regime. However, so far light localization has been limited to the >10 nm range. The present project will synergistically combine both groundbreaking aspects of atomic scale light localization by implementing a new type of scanning microscopy which uses atomically confined MIM cavity resonances as optical probes. We recently succeeded in fabricating single-crystal metal-insulator-metal (MIM) nano resonators with sub-1nm insulating gaps and demonstrated the corresponding sub-1nm light confinement. Lateral scanning of probe and/or sample on the one hand will afford spectroscopic mapping with near-atomic spatial resolution by recording luminescence and Raman scattering of nano objects, such as individual quantum dots, (bio)molecules, and novel 2D-materials. The strong gradients of the probe field are expected to open multipolar spectroscopic channels due to modified selection rules. On the other hand, probe scanning also varies the coupling strength between probe and quantum emitters, causing a smooth transition from the perturbative into the strong and possibly even ultrastrong interaction regime. It is further expected that the quantum mechanical entanglement of probe and quantum emitter in the strong coupling regime will lead to new imaging modalities.
在高分辨率扫描光学显微镜以及强光-物质耦合方面,将光子定位到原子长度尺度提供了令人着迷的可能性。原子尺度分辨率光谱成像预计将对生命科学以及纳米科学产生巨大影响。另一方面,具有原子尺度模式体积的纳米级光学谐振腔中的强耦合对于量子计算方案的大规模集成和单光子体制下全光数据处理的非线性实现具有重要意义。然而,到目前为止,光定位仅限于bbb10nm范围。本项目将协同结合原子尺度光定位的两个突破性方面,通过实施一种新型扫描显微镜,使用原子受限的MIM腔共振作为光学探针。我们最近成功地制造了具有亚1nm绝缘间隙的单晶金属-绝缘体-金属(MIM)纳米谐振器,并展示了相应的亚1nm光约束。一方面,探针和/或样品的横向扫描将通过记录纳米物体(如单个量子点、(生物)分子和新型2d材料)的发光和拉曼散射,提供具有近原子空间分辨率的光谱映射。由于选择规则的改进,探测场的强梯度有望打开多极光谱通道。另一方面,探针扫描也改变了探针和量子发射体之间的耦合强度,导致从微扰到强甚至可能是超强相互作用的平滑过渡。在强耦合状态下,探针和量子发射器的量子力学纠缠将产生新的成像方式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Bert Hecht其他文献

Professor Dr. Bert Hecht的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Bert Hecht', 18)}}的其他基金

Subwavelength molecular opto-electronic devices based on plasmonic nano antennas
基于等离子体纳米天线的亚波长分子光电器件
  • 批准号:
    281419165
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Anwendungen und Leistungsfähigkeit resonanter optischer Antennen
谐振光学天线的应用和性能
  • 批准号:
    79275245
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
ERA NanoSci - Femtosecond Nano-Optical Magnetic Recording and Retrieval
ERA NanoSci - 飞秒纳米光磁记录和检索
  • 批准号:
    118681512
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Light-driven nanodrones based on optical spin-orbit locking
基于光学自旋轨道锁定的光驱动纳米无人机
  • 批准号:
    438123468
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dicke-enhanced single-emitter strong coupling at ambient conditions as a quantum resource
环境条件下厚度增强的单发射极强耦合作为量子资源
  • 批准号:
    499351108
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Metabolic impairment plays a critical role in radiation-induced T cell immune dysfunction
代谢损伤在辐射诱导的 T 细胞免疫功能障碍中起着关键作用
  • 批准号:
    10474738
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Metabolic impairment plays a critical role in radiation-induced T cell immune dysfunction
代谢损伤在辐射诱导的 T 细胞免疫功能障碍中起着关键作用
  • 批准号:
    10668368
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Single-molecule Measurements of Membrane-protein Folding and Ligand-Interaction Energetics in Bacteriorhodopsin and the Diabetes-insipidus-involved Vasopressin Receptor 2
细菌视紫红质和尿崩症相关加压素受体 2 中膜蛋白折叠和配体相互作用能量的单分子测量
  • 批准号:
    10356067
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Single-molecule Measurements of Membrane-protein Folding and Ligand-Interaction Energetics in Bacteriorhodopsin and the Diabetes-insipidus-involved Vasopressin Receptor 2
细菌视紫红质和尿崩症相关加压素受体 2 中膜蛋白折叠和配体相互作用能量的单分子测量
  • 批准号:
    10837664
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
SINGLE MOLECULAR NANOSCOPIC IMAGING ON LIVING CELLS
活细胞的单分子纳米成像
  • 批准号:
    10217211
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
SINGLE MOLECULAR NANOSCOPIC IMAGING ON LIVING CELLS
活细胞的单分子纳米成像
  • 批准号:
    10043309
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Fluorescent enhancement of the nitrogen vacancy center in nanoscale diamond for bioimaging applications
用于生物成像应用的纳米金刚石中氮空位中心的荧光增强
  • 批准号:
    10205094
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Entangled Photons from a Single Molecule, for Experiments on Single Emitters, Quantum Memories and Atomic Gases
来自单分子的纠缠光子,用于单发射器、量子存储器和原子气体的实验
  • 批准号:
    328407404
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Quantum State Manipulation of Single Photons via Atomic Interactions
通过原子相互作用对单光子进行量子态操纵
  • 批准号:
    481714-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Nanoparticulate Coatings Enhance Ion Detection
纳米颗粒涂层增强离子检测
  • 批准号:
    10883978
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了