Planning: Machine Learning in Transportation: Enhancing STEM Education and Research Capacity at The University of Texas at El Paso

规划:交通运输中的机器学习:增强德克萨斯大学埃尔帕索分校的 STEM 教育和研究能力

基本信息

  • 批准号:
    2332774
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

With support from the Improving Undergraduate STEM Education: Hispanic-Serving Institutions (HSI Program), this Planning project aims to foster cross-disciplinary education in transportation engineering, leveraging the potential of machine learning. This problem is important because machine learning has the potential to revolutionize transportation planning and operations, but there is a lack of cross-disciplinary education that can fully leverage its potential. This project seeks to address this gap by developing an interdisciplinary course that emphasizes project-based learning and student feedback, with a focus on the application of machine learning in transportation. The course will be enriched with real-world projects and a campus-wide machine learning challenge, with the goal of generating a culture of research and learning that extends beyond the classroom. The project plan includes eight tasks designed to attain the proposed research and education objectives, with a focus on measuring performance through an integrated retrospective evaluation and research element. This project's broader impact is to transform the transportation field and contribute to greater diversity in STEM. It aims to produce a skilled cohort of students who can effectively apply machine learning to transportation problems, ultimately contributing to the efficiency, safety, and sustainability of transportation systems. The project also expects to enhance the visibility and understanding of machine learning and its applications in the broader community. The specific aim of the project is to bridge the gap in current engineering education by integrating machine learning into transportation education and research at the University of Texas at El Paso (UTEP). The primary research question is: How can integrate machine learning techniques be integrated effectively into transportation engineering education to enhance students' capabilities in solving complex real-world problems? The hypothesis is that a comprehensive, project-based approach combining theoretical instruction and practical application can significantly enhance students' learning outcomes in this interdisciplinary area. The research methods center around the development and delivery of a new cross-listed course. The course will be supplemented by a monthly seminar series and a "Machine Learning in Transportation Challenge" at UTEP to foster hands-on learning and interdisciplinary collaboration. The expected results include improved student self-efficacy, interdisciplinary mindset development, and conceptual development in the intersection of transportation and machine learning. These results will be evaluated through a retrospective study focusing on these key areas. The results of this work will be disseminated, allowing educators and institutions beyond UTEP to benefit from the findings and methodologies. Through these initiatives, younger students might be inspired to pursue STEM studies and careers, and encourage public engagement with the important intersections of technology, transportation, and societal needs. The HSI Program aims to enhance undergraduate STEM education and build capacity at HSIs. Projects supported by the HSI Program will also generate new knowledge on how to achieve these aims.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在改善本科STEM教育:西班牙裔服务机构(HSI计划)的支持下,该规划项目旨在促进交通工程的跨学科教育,利用机器学习的潜力。这个问题很重要,因为机器学习有可能彻底改变交通规划和运营,但缺乏能够充分发挥其潜力的跨学科教育。该项目旨在通过开发跨学科课程来解决这一差距,该课程强调基于项目的学习和学生反馈,重点关注机器学习在交通运输中的应用。该课程将通过现实世界的项目和校园范围的机器学习挑战来丰富,其目标是产生一种超越课堂的研究和学习文化。该项目计划包括八项任务,旨在实现拟议的研究和教育目标,重点是通过综合的回顾性评价和研究内容来衡量业绩。该项目更广泛的影响是改变交通领域,并促进STEM的更大多样性。它旨在培养一批能够有效地将机器学习应用于交通问题的熟练学生,最终为交通系统的效率,安全和可持续性做出贡献。该项目还希望提高机器学习及其在更广泛社区中的应用的可见性和理解。该项目的具体目标是通过将机器学习整合到德克萨斯大学埃尔帕索分校(UTEP)的交通教育和研究中,弥合当前工程教育的差距。主要的研究问题是:如何将机器学习技术有效地整合到交通工程教育中,以提高学生解决复杂现实问题的能力?我们的假设是,一个全面的,基于项目的方法结合理论教学和实际应用可以显着提高学生的学习成果在这个跨学科领域。研究方法围绕一个新的交叉上市的课程的开发和交付中心。该课程将通过每月一次的系列研讨会和UTEP的“运输挑战中的机器学习”来补充,以促进实践学习和跨学科合作。预期的结果包括提高学生的自我效能感,跨学科的思维发展,以及交通和机器学习交叉领域的概念发展。这些结果将通过一项侧重于这些关键领域的回顾性研究进行评估。这项工作的结果将被传播,使教育工作者和机构以外的UTEP受益于调查结果和方法。通过这些举措,年轻的学生可能会受到启发,追求STEM研究和职业,并鼓励公众参与技术,交通和社会需求的重要交叉点。HSI计划旨在加强本科STEM教育,并建立HSI的能力。HSI计划支持的项目也将产生关于如何实现这些目标的新知识。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natalia Villanueva Rosales其他文献

Natalia Villanueva Rosales的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natalia Villanueva Rosales', 18)}}的其他基金

SCC-IRG Track 2: Smart Social Connector: An Interdisciplinary, Collaborative Approach to Foster Social Connectedness in Underserved Senior Populations
SCC-IRG 第 2 轨道:智能社交连接器:一种跨学科的协作方法,以促进服务不足的老年人群的社会联系
  • 批准号:
    1952243
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ELEMENTS: DATA: HDR: SWIM to a Sustainable Water Future
要素:数据:HDR:通过游泳实现可持续水未来
  • 批准号:
    1835897
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
IRES: US-Mexico Interdisciplinary Research Collaboration for Smart Cities
IRES:美国-墨西哥智慧城市跨学科研究合作
  • 批准号:
    1658733
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Machine Learning-Aided Solutions for Efficient Planning, Design, Operation and Adaptation of Beyond 5G Wireless Networks
用于高效规划、设计、运营和适应超 5G 无线网络的机器学习辅助解决方案
  • 批准号:
    RGPIN-2022-03798
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a machine learning-based species distribution model and its application to conservation planning of critically endangered mammal
基于机器学习的物种分布模型的开发及其在极度濒危哺乳动物保护规划中的应用
  • 批准号:
    22K18055
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
  • 批准号:
    10448106
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
  • 批准号:
    10642813
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Improving Adaptive Radiation Therapy Efficiency with Machine Learning Treatment Planning
通过机器学习治疗计划提高自适应放射治疗效率
  • 批准号:
    475584
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship Programs
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
  • 批准号:
    2119677
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
  • 批准号:
    2118737
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Using Machine Learning in Decision-making to Augment Beauty, Resilience, and Sustainability Outcomes in Urban Planning
在决策中使用机器学习来增强城市规划的美观性、弹性和可持续性成果
  • 批准号:
    2496675
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了