EAGER: Revolutionizing Wikipedia’s Relationship with New and Emerging Knowledge
EAGER:彻底改变维基百科与新兴知识的关系
基本信息
- 批准号:2332841
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Millions of people view Wikipedia’s articles daily, and many services rely on the quality of Wikipedia to power their business and AI ventures. This project will contribute new and validated, high-fidelity designs for the fundamental mechanisms Wikipedia uses to organize knowledge, with the goal of enriching the types of knowledge it includes and expand the evidentiary standards it employs. Wikipedia's success rests on a radical knowledge production process—anyone can edit the articles—coupled with a strict evidentiary epistemology that mandates "reliable sources" and a "neutral point of view". But along with the success has come systematic problems and controversies over what knowledge is "valid." These processes may have the effect of excluding much valuable knowledge, including (1) knowledge based on different ways of knowing, such as oral histories; (2) less established knowledge, including emerging knowledge about new medical treatments and therapies; and (2) knowledge directed toward different goals, for example personal experiences that contextualize textbook knowledge. These exclusions occur through the decisions of Wikipedia editors: which edits they allow and which they undo and what rules they enforce. Research will fill the theory-practice gap in Wikipedia research via well-evaluated, high-fidelity prototypes that can change the evidentiary practices in the online encyclopedia. This goal will be accomplished through four phases of work: Phase 1: Translate theory and practice into low-fidelity prototypes for new knowledge representations. Phase 2: Validate initial designs with a small panel of Wikipedia experts. Phase 3: Develop the most promising ideas from Phase 2 into high-fidelity, functional prototypes. Phase 4: Evaluate the high-fidelity prototypes through an asynchronous online community for design critique and generation. Expected scientific outcomes of this project include new design prototypes and policies for Wikipedia that expand and enrich its knowledge-production epistemology, and expert and stakeholder insights into the potential feasibility, efficacy, and acceptability of the designs and policies. This multi-stage, iterative design process is applicable to other complex and risky arenas, such as designing interventions for credibility assessment in social platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每天有数百万人查看维基百科的文章,许多服务都依赖维基百科的质量来为其业务和人工智能企业提供动力。该项目将为维基百科用于组织知识的基本机制提供新的、经过验证的高保真设计,其目标是丰富其包含的知识类型并扩展其采用的证据标准。维基百科的成功依赖于激进的知识生产过程——任何人都可以编辑文章——加上严格的证据认识论,要求“可靠的来源”和“中立的观点”。但伴随成功而来的是关于什么知识是“有效”的系统性问题和争议。这些过程可能会产生排除许多有价值的知识的效果,包括(1)基于不同认识方式的知识,例如口述历史; (2) 较不成熟的知识,包括有关新医学治疗和疗法的新兴知识; (2)针对不同目标的知识,例如将课本知识置于情境中的个人经历。这些排除是通过维基百科编辑的决定而发生的:他们允许哪些编辑,他们撤消哪些编辑以及他们执行哪些规则。研究将通过经过良好评估的高保真原型来填补维基百科研究中的理论与实践空白,这些原型可以改变在线百科全书的证据实践。这一目标将通过四个阶段的工作来实现: 第一阶段:将理论和实践转化为新知识表示的低保真原型。第 2 阶段:与一小部分维基百科专家一起验证初始设计。第 3 阶段:将第 2 阶段中最有前途的想法开发成高保真功能原型。第 4 阶段:通过异步在线社区评估高保真原型,以进行设计批评和生成。该项目的预期科学成果包括维基百科的新设计原型和政策,以扩展和丰富其知识生产认识论,以及专家和利益相关者对设计和政策的潜在可行性、有效性和可接受性的见解。这种多阶段、迭代的设计过程适用于其他复杂且有风险的领域,例如设计社交平台可信度评估的干预措施。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stevie Chancellor其他文献
Toward Practices for Human-Centered Machine Learning
迈向以人为本的机器学习实践
- DOI:
10.1145/3530987 - 发表时间:
2023 - 期刊:
- 影响因子:22.7
- 作者:
Stevie Chancellor - 通讯作者:
Stevie Chancellor
Community Resilience: Quantifying the Disruptive Effects of Sudden Spikes in Activity within Online Communities
社区复原力:量化在线社区内活动突然激增的破坏性影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Chan;Aditi Atreyasa;Stevie Chancellor;Eshwar Chandrasekharan - 通讯作者:
Eshwar Chandrasekharan
All That's Happening behind the Scenes: Putting the Spotlight on Volunteer Moderator Labor in Reddit
幕后发生的一切:聚焦 Reddit 的志愿者版主劳动
- DOI:
10.48550/arxiv.2205.14529 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hanlin Li;Brent J. Hecht;Stevie Chancellor - 通讯作者:
Stevie Chancellor
Methods in predictive techniques for mental health status on social media: a critical review
社交媒体上心理健康状况预测技术的方法:批判性综述
- DOI:
10.1038/s41746-020-0233-7 - 发表时间:
2020-03-24 - 期刊:
- 影响因子:15.100
- 作者:
Stevie Chancellor;Munmun De Choudhury - 通讯作者:
Munmun De Choudhury
"All of the White People Went First": How Video Conferencing Consolidates Control and Exacerbates Workplace Bias
“所有白人先行”:视频会议如何巩固控制并加剧工作场所偏见
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Houtti;Moyan Zhou;Loren Terveen;Stevie Chancellor - 通讯作者:
Stevie Chancellor
Stevie Chancellor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Revolutionizing Spacecraft Thermal Control with Dynamic Graphene Radiators: SmartSat
利用动态石墨烯散热器彻底改变航天器热控制:SmartSat
- 批准号:
10098641 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Revolutionizing Tactile AI: Developing a Soft, Liquid-Structured, High Density, 3-Axis Tactile Sensor
彻底改变触觉 AI:开发柔软、液体结构、高密度、3 轴触觉传感器
- 批准号:
24K20874 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Integrated Event-Based SoC: Revolutionizing Sensor and AI Processor Performance with Low-Latency, Energy-Efficient Neuromorphic Computing
基于事件的集成 SoC:通过低延迟、节能的神经拟态计算彻底改变传感器和 AI 处理器的性能
- 批准号:
10072308 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant for R&D
Revolutionizing Rice Cultivation: A Novel Low-Emission Rice Line to Mitigate Agriculture's Environmental CO2 Impact
彻底改变水稻种植:新型低排放水稻生产线可减轻农业对环境二氧化碳的影响
- 批准号:
10078069 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Revolutionizing Glioblastoma Treatment: The Promise of Targeting Oncostatin M Receptor in Combination with Current Therapies
彻底改变胶质母细胞瘤治疗:靶向制瘤素 M 受体与现有疗法相结合的前景
- 批准号:
495142 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Miscellaneous Programs
SBIR Phase I: Revolutionizing the Menopause Marketplace: The Potential of Cooling Jewelry to Provide Non-Medicinal Relief for Hot Flashes and Night Sweats
SBIR 第一阶段:彻底改变更年期市场:清凉珠宝在非药物缓解潮热和盗汗方面的潜力
- 批准号:
2235189 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Revolutionizing Electric Vehicle Education
合作研究:彻底改变电动汽车教育
- 批准号:
2202115 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track I: Revolutionizing the manufacture of Portland cement concretes towards a circular and carbon-negative future
NSF 融合加速器轨道 I:彻底改变波特兰水泥混凝土的制造,迈向循环和负碳未来
- 批准号:
2236331 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




