EAGER: Foundations for the Systematic Study of Synthetic Data
EAGER:综合数据系统研究的基础
基本信息
- 批准号:2333225
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advancements in data-driven models in various fields like natural language processing, computer vision, and robotics have been made possible due to the availability of large amounts of data. However, concerns about privacy rights have been growing, leading to the need for strategies that protect individual data while still allowing data sharing. Synthetic data offers a potential solution by preserving the statistical properties of the original data while removing any personally identifiable information. Although many methods for generating synthetic data have been proposed, there is still a lack of solid theoretical foundations in this area. This project bridges the gap between theory and practice. The project's novelties are in developing the fundamental principles for the systematic study of synthetic data, and in clarifying the technical vocabulary and the associated concepts. The project's broader significance and importance is in its ability to allow institutions to articulate, enforce, evaluate, and validate their required constraints for synthetic data generation methodologies, significantly accelerating data-sharing. With heightened privacy and enhanced utility hand in hand, this framework will shape a world where privacy is safeguarded, knowledge is shared, and AI-based methods truly flourish for the betterment of humanity. The project conceptualizes the philosophical considerations of synthetic data, establishes properties of synthetic data, develops formal definitions of what it means to be “synthetic”, and develops a comprehensive evaluation framework for synthetic data that includes curated datasets, metrics, and baselines. The research improves our scientific understanding of privacy, utility, and synthetic data. The project also cultivates the integration of research and education, by providing new security or privacy projects for undergraduate and graduate research and outreach activities, and serves as an invaluable teaching tool and excellent entry point into the field of privacy and security research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于大量数据的可获得性,数据驱动模型在自然语言处理、计算机视觉和机器人等各个领域的进步成为可能。然而,对隐私权的担忧一直在增长,这导致需要制定策略,在保护个人数据的同时仍允许数据共享。合成数据提供了一种潜在的解决方案,它保留了原始数据的统计属性,同时删除了任何个人身份信息。虽然已经提出了许多生成合成数据的方法,但在这一领域仍然缺乏坚实的理论基础。这个项目在理论和实践之间架起了一座桥梁。该项目的创新之处在于制定了对合成数据进行系统研究的基本原则,并澄清了技术词汇和相关概念。该项目更广泛的意义和重要性在于,它能够允许各机构阐明、执行、评估和验证它们对合成数据生成方法所需的限制,从而显著加快数据共享。随着隐私的提高和效用的增强,这一框架将塑造一个隐私得到保护、知识共享、基于人工智能的方法真正蓬勃发展的世界,以改善人类。该项目概念化了合成数据的哲学考虑,确立了合成数据的属性,对“合成”的含义进行了正式定义,并开发了一个合成数据的综合评估框架,其中包括精选的数据集、度量和基线。这项研究提高了我们对隐私、效用和合成数据的科学理解。该项目还通过为本科生和研究生的研究和推广活动提供新的安全或隐私项目,培养研究和教育的一体化,并作为一个宝贵的教学工具和进入隐私和安全研究领域的极好切入点。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaideep Vaidya其他文献
A profile anonymization model for location-based services
基于位置的服务的个人资料匿名化模型
- DOI:
10.3233/jcs-2010-0416 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Heechang Shin;Jaideep Vaidya;V. Atluri - 通讯作者:
V. Atluri
A Secure Revised Simplex Algorithm for Privacy-Preserving Linear Programming
- DOI:
10.1109/aina.2009.133 - 发表时间:
2009-05 - 期刊:
- 影响因子:0
- 作者:
Jaideep Vaidya - 通讯作者:
Jaideep Vaidya
Security Analysis of Unified Access Control Policies
统一访问控制策略的安全分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Singh;S. Sural;V. Atluri;Jaideep Vaidya - 通讯作者:
Jaideep Vaidya
Managing Multi-dimensional Multi-granular Security Policies Using Data Warehousing
使用数据仓库管理多维多粒度安全策略
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
M. Singh;S. Sural;V. Atluri;Jaideep Vaidya;Ussama Yakub - 通讯作者:
Ussama Yakub
Using Gini Impurity to Mine Attribute-based Access Control Policies with Environment Attributes
使用基尼不纯度挖掘具有环境属性的基于属性的访问控制策略
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Saptarshi Das;S. Sural;Jaideep Vaidya;V. Atluri - 通讯作者:
V. Atluri
Jaideep Vaidya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaideep Vaidya', 18)}}的其他基金
Workshop: Establishing the Vision and Creating a Roadmap for Security, Privacy and Ethics Research in Healthcare
研讨会:为医疗保健领域的安全、隐私和道德研究制定愿景并制定路线图
- 批准号:
2037359 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RAPID: Privacy-Preserving Crowdsensing of COVID-19 and its Sociological and Epidemiological Implications
RAPID:COVID-19 的隐私保护群体感知及其社会学和流行病学影响
- 批准号:
2027789 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1564034 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
TWC: Small: Privacy Preserving Outlier Detection and Recognition
TWC:小型:隐私保护异常值检测和识别
- 批准号:
1422501 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
TUES: Type 1: INSPIRE: INStructional materials for PrIvacy Research and Education
周二:类型 1:INSPIRE:隐私研究和教育教学材料
- 批准号:
1141000 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Collaborative Optimization with Limited Information Disclosure
职业:有限信息披露的协作优化
- 批准号:
0746943 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant