CAREER: Collaborative Optimization with Limited Information Disclosure

职业:有限信息披露的协作优化

基本信息

  • 批准号:
    0746943
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

CAREER: Collaborative Optimization with Limited Information DisclosureWith the rapid increase in computing, storage and networking resources, data is not only collected and stored but also analyzed. This creates a serious privacy problem which often inhibits the use of this data. This project explores the problem of performing optimization analysis over distributed data without conflicting with privacy and security concerns. This is especially challenging due to the complexity and iterative nature of the solutions. An inherent aim is to also solve some of the fundamental problems underlying privacy-preserving analysis / secure computation and make it more accessible and applicable. Some of the innovative expected results include: (1) novel formulations of security definitions that are more relaxed than the traditional definitions yet still model the real security concerns; (2) new algorithms, computational complexity results, and tools for specific widely used optimization problems; (3) a more generalized view of privacy; (4) game theoretic interpretations and modeling of the multi-party computation; and (5) result analysis ? a quantification of privacy loss through results. The project will have tremendous broader impact via fundamental research and integrative education. Direct outcomes of the research can significantly help in widening co-operation between organizations and minimize loss through data isolation. This would result in cost savings and new income realization potentially worth billions of dollars through joint resource usage. Translation of the research to real use has the potential to revolutionize the mediator/consolidator industry. The integrative education activities will foster actual use of the technology and open up its acceptance into the real world
职业:信息披露受限的协同优化随着计算、存储和网络资源的快速增长,数据不仅要被收集和存储,还要被分析。这造成了严重的隐私问题,往往会阻碍这些数据的使用。该项目探讨了在不与隐私和安全问题冲突的情况下对分布式数据进行优化分析的问题。由于解决方案的复杂性和迭代性,这尤其具有挑战性。一个内在的目标是解决隐私保护分析/安全计算背后的一些基本问题,并使其更容易获得和适用。一些创新性的预期结果包括:(1)新的安全定义的公式,比传统的定义更宽松,但仍然模拟真实的安全问题;(2)新的算法,计算复杂性的结果,和工具,为特定的广泛使用的优化问题;(3)更广义的隐私观;(4)博弈论的解释和多方计算的建模;(5)结果分析。通过结果量化隐私损失。该项目将通过基础研究和综合教育产生巨大的更广泛的影响。研究的直接成果可以大大有助于扩大组织之间的合作,并通过数据隔离将损失降至最低。这将通过联合使用资源节省成本,实现价值数十亿美元的新收入。将研究转化为真实的使用有可能彻底改变中介/整合行业。综合教育活动将促进技术的实际使用,并使其进入真实的世界

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaideep Vaidya其他文献

A profile anonymization model for location-based services
基于位置的服务的个人资料匿名化模型
  • DOI:
    10.3233/jcs-2010-0416
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heechang Shin;Jaideep Vaidya;V. Atluri
  • 通讯作者:
    V. Atluri
A Secure Revised Simplex Algorithm for Privacy-Preserving Linear Programming
Using Gini Impurity to Mine Attribute-based Access Control Policies with Environment Attributes
使用基尼不纯度挖掘具有环境属性的基于属性的访问控制策略
Security Analysis of Unified Access Control Policies
统一访问控制策略的安全分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Singh;S. Sural;V. Atluri;Jaideep Vaidya
  • 通讯作者:
    Jaideep Vaidya
Managing Multi-dimensional Multi-granular Security Policies Using Data Warehousing
使用数据仓库管理多维多粒度安全策略

Jaideep Vaidya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaideep Vaidya', 18)}}的其他基金

EAGER: Foundations for the Systematic Study of Synthetic Data
EAGER:综合数据系统研究的基础
  • 批准号:
    2333225
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Workshop: Establishing the Vision and Creating a Roadmap for Security, Privacy and Ethics Research in Healthcare
研讨会:为医疗保健领域的安全、隐私和道德研究制定愿景并制定路线图
  • 批准号:
    2037359
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RAPID: Privacy-Preserving Crowdsensing of COVID-19 and its Sociological and Epidemiological Implications
RAPID:COVID-19 的隐私保护群体感知及其社会学和流行病学影响
  • 批准号:
    2027789
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
  • 批准号:
    1564034
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC: Small: Privacy Preserving Outlier Detection and Recognition
TWC:小型:隐私保护异常值检测和识别
  • 批准号:
    1422501
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TUES: Type 1: INSPIRE: INStructional materials for PrIvacy Research and Education
周二:类型 1:INSPIRE:隐私研究和教育教学材料
  • 批准号:
    1141000
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402572
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402571
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了