mCDR 2023: Data requirements for quantifying natural variability and the background ocean carbon sink in marine carbon dioxide removal (mCDR) models
mCDR 2023:海洋二氧化碳清除(mCDR)模型中量化自然变化和背景海洋碳汇的数据要求
基本信息
- 批准号:2333608
- 负责人:
- 金额:$ 51.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In order to combat the expected impacts of climate change, active removal of carbon dioxide (CO2) from the atmosphere and oceans will likely be needed in addition to emissions reductions. There is a growing consensus that at least some of society’s needs for carbon dioxide removal (CDR) will have to come from the ocean. An important requirement of any ocean CDR strategy is the ability to demonstrate that it has “worked,” i.e., that it has resulted in the uptake of additional CO2 from the atmosphere beyond what is already naturally occurring due to rising atmospheric CO2 concentrations, termed here the “background” ocean carbon sink. Ocean models are expected to play a key role in this effort. In the interest of validating these models, this project will determine the natural background carbon uptake, its variability, and the degree of certainty with which it is known, in areas of the ocean where CDR deployments are likely to take place. Requirements for additional sampling needed to improve understanding of the background ocean carbon sink and to confidently measure the additional signal from CDR will be determined. This work will support future observing system development, and ultimately the future development of observation-based benchmarks against which proposed marine CDR models can be evaluated. The project will provide salary support to an early career researcher to become an expert in ocean carbon cycling and machine learning, skills critical to ocean science and the marine CDR (mCDR) workforce. This project is being jointly supported by the National Oceanic and Atmospheric Administration, through the National Oceanographic Partnership Program.The objectives of this project are to 1) quantify uncertainties in air-sea CO2 flux variability and the integrated background ocean carbon sink on regional scales, and 2) set requirements for additional data collection that will reduce these uncertainties. Following successful prior work at the global scale, these objectives will be achieved by developing and applying a ‘testbed’. This testbed will be a high-resolution (1/10°) ocean model that will be sampled with the spatio-temporal pattern of existing surface pCO2 observations in regions on the West and East US Coast, Hawaii and the Bering Sea. Machine learning reconstructions will be performed based on these samples to reconstruct full field, time-varying pCO2. The unique advantage of a testbed is that the fidelity of the reconstructions can be evaluated based on comparison to the original full model fields. This approach allows for assessment of how well sparse data and state-of-the-art machine learning techniques can be combined to constrain surface ocean carbon fluxes. In a second phase, observing system simulation experiments (OSSEs) will establish optimal observing designs that can further reduce reconstruction uncertainties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了应对气候变化的预期影响,除了减少排放外,可能还需要从大气和海洋中积极清除二氧化碳。越来越多的人认为,至少社会对二氧化碳清除(CDR)的一部分需求将来自海洋。任何海洋CDR战略的一个重要要求是能够证明它已经“奏效”,即,它导致从大气中吸收额外的二氧化碳,超出了由于大气二氧化碳浓度上升而自然发生的情况,在此称为“背景”海洋碳汇。预计海洋模型将在这一努力中发挥关键作用。为了验证这些模型,该项目将确定自然背景碳吸收,其可变性,以及在可能部署CDR的海洋区域中已知的确定性程度。将确定为提高对本底海洋碳汇的了解和自信地测量来自CDR的额外信号所需的额外采样要求。这项工作将支持未来的观测系统开发,并最终支持未来开发基于观测的基准,以便对拟议的海洋CDR模型进行评估。该项目将为早期职业研究人员提供工资支持,使其成为海洋碳循环和机器学习方面的专家,这些技能对海洋科学和海洋CDR(mCDR)劳动力至关重要。该项目由美国国家海洋和大气管理局通过国家海洋学伙伴关系计划共同支持,其目标是:1)量化海气CO2通量变化和区域尺度综合背景海洋碳汇的不确定性; 2)为减少这些不确定性的额外数据收集设定要求。在全球范围内成功的前期工作之后,这些目标将通过开发和应用“试验台”来实现。该试验台将是一个高分辨率(1/10°)海洋模型,将利用美国西海岸和东海岸、夏威夷和白令海各区域现有表面pCO 2观测的时空模式进行采样。将根据这些样本进行机器学习重建,以重建全视野、时变pCO 2。测试平台的独特优势在于可以根据与原始完整模型场的比较来评估重建的保真度。这种方法允许评估稀疏数据和最先进的机器学习技术如何结合起来限制表层海洋碳通量。在第二阶段,观测系统模拟实验(OSSE)将建立最佳的观测设计,可以进一步减少重建的不确定性。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galen McKinley其他文献
Galen McKinley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galen McKinley', 18)}}的其他基金
NSFGEO-NERC: Collaborative Research: Role of the Overturning Circulation in Carbon Accumulation (ROCCA)
NSFGEO-NERC:合作研究:翻转环流在碳积累中的作用(ROCCA)
- 批准号:
2400433 - 财政年份:2024
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Collaborative Research: Forced drivers of trends in ocean biogeochemistry: Volcanos and atmospheric carbon dioxide
合作研究:海洋生物地球化学趋势的强制驱动因素:火山和大气二氧化碳
- 批准号:
1948624 - 财政年份:2020
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Collaborative Research: Uncertainty in predictions of 21st century ocean biogeochemical change
合作研究:21世纪海洋生物地球化学变化预测的不确定性
- 批准号:
1818501 - 财政年份:2017
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Collaborative Research: Uncertainty in predictions of 21st century ocean biogeochemical change
合作研究:21世纪海洋生物地球化学变化预测的不确定性
- 批准号:
1558258 - 财政年份:2016
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Collaborative Research: The carbon balance of Lake Superior: Modeling lake processes and understanding impacts on the regional carbon budget
合作研究:苏必利尔湖的碳平衡:模拟湖泊过程并了解对区域碳预算的影响
- 批准号:
0628560 - 财政年份:2006
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
相似国自然基金
2023年Mw7.8和Mw7.6级土耳其双地震发生机理的三维数值模拟研究
- 批准号:42474125
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:72311540128
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:国际(地区)合作与交流项目
2023年(第四届)国际生物数学与医学应用研讨会
- 批准号:12342004
- 批准年份:2023
- 资助金额:8.00 万元
- 项目类别:专项项目
建筑学科青年学术沙龙-2023
- 批准号:52342802
- 批准年份:2023
- 资助金额:10.00 万元
- 项目类别:专项项目
2023年全国核反应会议
- 批准号:12342026
- 批准年份:2023
- 资助金额:8 万元
- 项目类别:专项基金项目
学术交流类:2023 IEEE第六届国际电气与能源大会
- 批准号:52342701
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
中国物理学会2023年秋季学术会议
- 批准号:12342017
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:专项基金项目
中国天文学会2023年学术年会
- 批准号:12342013
- 批准年份:2023
- 资助金额:15.00 万元
- 项目类别:专项项目
学术交流类:第26届国际电机与系统大会(ICEMS 2023)专项项目
- 批准号:52342703
- 批准年份:2023
- 资助金额:10.00 万元
- 项目类别:专项项目
湘西地区2023-2035年学龄人口预测与学前教育资源需求研究
- 批准号:2023JJ40513
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: INTERNATIONAL SUMMER SCHOOL ON DATA SCIENCE AND ENGINEERING IN HEALTHCARE, MEDICINE AND BIOLOGY, JUNE 4 -10, 2023, CRETE, GREECE:
会议:国际医疗保健、医学和生物学数据科学与工程暑期学校,2023 年 6 月 4 日至 10 日,希腊克里特岛:
- 批准号:
2323134 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Travel: Student Support for the 2023 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023)
旅行:2023 年 ACM SIGKDD 知识发现和数据挖掘会议 (KDD 2023) 的学生支持
- 批准号:
2323492 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Workshops on Smart Manufacturing with Open and Scaled Data Sharing in Semiconductor and Microelectronics Manufacturing; Virtual and In-Person; Washington, DC; October/November 2023
半导体和微电子制造中开放和规模化数据共享的智能制造研讨会;
- 批准号:
2334590 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Advancing Probabilistic Fault Displacement Hazard Assessments by Collecting Perishable Data from the 2023 Turkiye Earthquake Sequence
RAPID/合作研究:通过收集 2023 年土耳其地震序列的易腐烂数据推进概率断层位移危险评估
- 批准号:
2330152 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Travel: III: Student Travel Support for 2023 ACM International Conference on Web Search and Data Mining (WSDM)
差旅:III:2023 年 ACM 网络搜索和数据挖掘国际会议 (WSDM) 学生差旅支持
- 批准号:
2245056 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Neonatal Research Network Data Coordinating Center (DCC) 2023-2028
新生儿研究网络数据协调中心 (DCC) 2023-2028
- 批准号:
10879205 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
NERC Environmental Data Service 2023-2028
NERC 环境数据服务 2023-2028
- 批准号:
NE/Y001729/1 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Research Grant
Collaborative Research: CEDAR: Swarm over Poker 2023--An Auroral System-Science Campaign Exemplar of Archiving and Aharing Heterogeneously-Derived Data Products
合作研究:CEDAR:Swarm over Poker 2023——极光系统科学运动归档和共享异构数据产品的范例
- 批准号:
2329981 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR: Swarm over Poker 2023--An Auroral System-Science Campaign Exemplar of Archiving and Aharing Heterogeneously-Derived Data Products
合作研究:CEDAR:Swarm over Poker 2023——极光系统科学运动归档和共享异构数据产品的范例
- 批准号:
2329979 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant
Travel Grant: Inaugural Data, Analysis and Software in Heliophysics (DASH) Conference; Laurel, Maryland; October 11-13, 2023
旅费资助:首届太阳物理学数据、分析和软件 (DASH) 会议;
- 批准号:
2334562 - 财政年份:2023
- 资助金额:
$ 51.75万 - 项目类别:
Standard Grant