Advancing Understanding of Super-Coarse and Giant Dust Particles via Novel Measurements of Emission and Transport

通过新颖的排放和传输测量方法增进对超粗和巨型灰尘颗粒的了解

基本信息

项目摘要

Dust storms are ubiquitous in Earth’s atmosphere and are composed of small mineral particles having diameters of varying sizes. Theory suggests that for dust transported long distances, the diameters of these particles should be limited to approximately 10 microns or smaller, due to the downward gravitational force acting to remove larger particles from the atmosphere. However, dust particles with diameters of tens to even hundreds of microns in size have been measured thousands of kilometers away from the deserts where they were lofted into the atmosphere. To-date, there is no accepted explanation for this so-called “giant dust particle conundrum”, highlighting a gap in physical understanding of atmospheric and aerosol processes. Since the magnitudes of dust storm effects on weather and climate, ranging from the absorption of sunlight to being a catalyst for biological activity in the oceans, depend on the physical characteristics of dust, including the particle sizes, there is a need to solve this conundrum. This project aims to improve understanding of the movement of dust particles having diameters greater than 10 microns (super coarse and giant particles, or SCG dust) in the atmosphere, and make progress towards solving the giant dust particle conundrum. Size-resolved changes in the concentrations of SCG dust during vertical diffusive and horizontal advective transport will be measured. Additionally, the size-resolved vertical flux of SCG dust at the point of emission will also be measured. These measurements will then be used to test two hypotheses that could explain the conundrum: (i) that current theory grossly overestimates dry deposition of these large particles during both vertical turbulent diffusive and horizontal advective transport and (ii) that the flux of SCG dust at emission is one to several orders of magnitude greater than that predicted by theory. These data will provide a unique opportunity to evaluate the theory governing the emission and atmospheric transport of these particles, and to generate new methods to represent these processes in weather and climate models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沙尘暴在地球大气层中随处可见,由直径大小不一的小矿物颗粒组成。理论表明,对于长距离输送的尘埃,由于向下的重力作用,这些颗粒的直径应该限制在大约10微米或更小,以将较大的颗粒从大气中移走。然而,直径从几十微米到数百微米的尘埃颗粒在距离沙漠数千公里的地方进行了测量,它们被排放到大气中。到目前为止,对于这一所谓的“巨大尘埃粒子难题”还没有得到公认的解释,这突显了对大气和气溶胶过程的物理理解的差距。由于沙尘暴对天气和气候的影响--从吸收阳光到成为海洋生物活动的催化剂--的程度取决于尘埃的物理特征,包括颗粒大小,因此需要解决这一难题。该项目旨在提高对直径大于10微米的尘埃颗粒(超粗和巨型尘埃,或称SCG尘埃)在大气中运动的了解,并在解决巨型尘埃粒子难题方面取得进展。将测量垂直扩散和水平平流输送过程中SCG粉尘浓度的尺寸分辨变化。此外,还将测量SCG粉尘在排放点的尺寸分辨垂直通量。然后,这些测量将被用来检验两个可以解释这个难题的假设:(I)当前的理论严重高估了这些大颗粒在垂直湍流扩散和水平平流输送过程中的干沉积,以及(Ii)SCG尘埃排放时的通量比理论预测的要大一到几个数量级。这些数据将提供一个独特的机会来评估管理这些颗粒的排放和大气传输的理论,并产生新的方法来在天气和气候模型中表示这些过程。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amato Evan其他文献

Aerosols and Atlantic aberrations
气溶胶和大西洋异常
  • DOI:
    10.1038/nature11037
  • 发表时间:
    2012-04-04
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Amato Evan
  • 通讯作者:
    Amato Evan

Amato Evan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amato Evan', 18)}}的其他基金

Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
  • 批准号:
    2333139
  • 财政年份:
    2024
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Standard Grant
Meteorological Controls on Dust Emission and Transport in a Closed Basin
密闭盆地扬尘及输送的气象控制
  • 批准号:
    1833173
  • 财政年份:
    2018
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

From Particles to Precipitation: Toward a Deeper Understanding of Cloud Systems with the Super-Droplet Method
从粒子到沉淀:利用超级水滴方法更深入地了解云系统
  • 批准号:
    23H00149
  • 财政年份:
    2023
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding the interactions of West Nile virus and Eastern equine encephalitis virus during co-infections and super-infections in mosquito species established in Canada
了解西尼罗河病毒和东部马脑炎病毒在加拿大建立的蚊种的共同感染和重复感染期间的相互作用
  • 批准号:
    569152-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Understanding physics in the vicinity of super massive black holes by centimeter and millimeter observations of nearby active galactic nuclei
通过对附近活动星系核的厘米和毫米观测来了解超大质量黑洞附近的物理现象
  • 批准号:
    22K14073
  • 财政年份:
    2022
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding host interactions with high consequence pathogens using super resolution light microscopy in biocontainment.
在生物防护中使用超分辨率光学显微镜了解宿主与高后果病原体的相互作用。
  • 批准号:
    BB/W020351/1
  • 财政年份:
    2022
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Research Grant
Integrated understanding of molecular mechanisms of osteosarcoma development focusing on Myc super-enhancer
以Myc超级增强子为中心全面理解骨肉瘤发生发展的分子机制
  • 批准号:
    21H03113
  • 财政年份:
    2021
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How to build a super phage: Understanding and improving bacteriophage biocontrol of Pseudomonas syringae pathovars.
如何构建超级噬菌体:了解和改进丁香假单胞菌致病菌的噬菌体生物防治。
  • 批准号:
    2597241
  • 财政年份:
    2021
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Studentship
AGS-PRF: Understanding Tropical High Cloud Feedbacks via Machine Learning and Super Parameterization
AGS-PRF:通过机器学习和超级参数化了解热带高云反馈
  • 批准号:
    2020305
  • 财政年份:
    2020
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Fellowship Award
DOC-SWEET: Deep Ocean Circulation during Super Warm Early Eocene Temperatures and climate: understanding the response of the Earth to high CO2 throug
DOC-SWEET:始新世早期超温暖温度和气候期间的深海环流:通过了解地球对高二氧化碳的反应
  • 批准号:
    2498851
  • 财政年份:
    2019
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Studentship
Research for understanding atmospheric momentum cycle for variation of the super-rotation in the stratosphere of Venus
金星平流层超自转变化的大气动量循环研究
  • 批准号:
    19K14789
  • 财政年份:
    2019
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the antimicrobial mechanism of metal nanoparticles using super resolution fluorescence microscopy
使用超分辨率荧光显微镜了解金属纳米颗粒的抗菌机制
  • 批准号:
    1826642
  • 财政年份:
    2018
  • 资助金额:
    $ 70.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了