Using Visual Computing to Deepen Mathematical Learning in Preservice K-8 Teacher Education
使用视觉计算深化职前 K-8 教师教育中的数学学习
基本信息
- 批准号:2337247
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by improving curricula in mathematics education for preservice K-8 teachers leveraging advances in visual computing technology and the engineering design process. K-8 teachers need to prepare future students for careers that require engineering, artificial intelligence (AI), mathematics and reasoning skills. This project falls under the IUSE: EDU Level 2 track in Engaged Student Learning by significantly advancing preservice teachers’ interdisciplinary mathematics skills by integrating visual computing and the engineering design process in lessons, activities, and assessments for an upper division mathematics methods course at Arizona State University. By incorporating these disciplines into the mathematics classroom, the project will engage both preservice teachers and their future students in applied learning of abstract mathematics concepts and demonstrate the real-world interdisciplinary applications of such knowledge. Research will study the effectiveness of the proposed intervention in supporting the contextualization of mathematics in the K-8 classroom. The project will feature broad dissemination of new curriculum through scientific publications and conference presentations as well as an online platform for sharing videos, lesson plans and activities, and teacher resources with the public. This project focuses on generating and advancing knowledge regarding the use of both the engineering design process and visual computing to contextualize mathematics. These goals will be accomplished through 10-week curricular integration into Arizona State University’s upper-division Mathematics Teacher Education (MTE) 311 course entitled “Geometry, Algebra, Statistics, and Probability for K-8 Teaching”, a course which will serve approximately 180 preservice teachers per year. The project team will investigate preservice teachers’ engagement, motivation, attitudes, and self-efficacy through a novel mixed-methods study design. Research findings will help advance understanding of instructor challenges and solutions regarding the integration of visual computing in teacher preparation programs. The developed curriculum will be taught to students in grades K-8 by preservice teachers in the program as part of their placements in schools in greater Phoenix, Arizona. Public dissemination of both the curriculum and the research findings will serve as a national model for improved interdisciplinary mathematics education through presentations, publications, workshops, and development of an online resource hub. The NSF IUSE: EDU Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.Partial funding for the project is from the Robert Noyce Teacher Scholarship program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过利用视觉计算技术和工程设计过程中的进步来改进K-8职前教师的数学教育课程,从而服务于国家利益。K-8教师需要让未来的学生为需要工程、人工智能(AI)、数学和推理技能的职业做好准备。该项目属于IUSE:EDU Level 2 Track in Engage Students,通过在亚利桑那州立大学高年级数学方法课程的课程、活动和评估中整合视觉计算和工程设计过程,显著提高职前教师的跨学科数学技能。通过将这些学科融入数学课堂,该项目将使职前教师和他们未来的学生参与抽象数学概念的应用学习,并展示这些知识在现实世界中的跨学科应用。研究将研究拟议的干预措施在支持K-8课堂上的数学情境化方面的有效性。该项目将通过科学出版物和会议报告广泛传播新课程,以及一个与公众分享视频、教案和活动以及教师资源的在线平台。这个项目的重点是生成和提高关于使用工程设计过程和视觉计算来将数学联系起来的知识。这些目标将通过为期10周的课程整合到亚利桑那州立大学的高年级数学教师教育(MTE)311课程中实现,该课程名为“K-8教学的几何、代数、统计和概率”,该课程每年将为大约180名职前教师提供服务。项目团队将通过一种新的混合方法研究设计来调查职前教师的敬业度、动机、态度和自我效能感。研究结果将有助于增进对教师在教师培训计划中整合视觉计算方面的挑战和解决方案的理解。开发的课程将由项目中的职前教师教授给K-8年级的学生,作为他们在亚利桑那州大凤凰城学校安置的一部分。通过专题介绍、出版物、讲习班和开发在线资源中心,公开传播课程和研究成果将成为改进跨学科数学教育的全国典范。NSF IUSE:EDU计划支持研究和开发项目,以提高所有学生的STEM教育的有效性。该项目的部分资金来自罗伯特·诺伊斯教师奖学金项目。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Terri Kurz其他文献
Terri Kurz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Terri Kurz', 18)}}的其他基金
相似国自然基金
基于多幅图象的Visual Hull重构及表面属性建模算法研究
- 批准号:60373031
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Differentiable Programming for Visual Computing
职业:视觉计算的可微分编程
- 批准号:
2238839 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2408964 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2146191 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
ELITE: Development of an Expertise Acquisition Platform Based on Provenance Management and Deep Learning with Application to Visual Computing Problems
ELITE:开发基于来源管理和深度学习的专业知识获取平台,应用于视觉计算问题
- 批准号:
21H04916 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Generation of Audio-Visual Contents by Using Harmony for Positive Computing
利用 Harmony 进行正向计算生成视听内容
- 批准号:
21K12084 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual
SHF: Small: Collaborative Research: Software-Defined Imaging for Energy-Efficient Visual Computing
SHF:小型:协作研究:用于节能视觉计算的软件定义成像
- 批准号:
1909073 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Learning Graph Representations for Intelligent Visual Computing
学习智能视觉计算的图表示
- 批准号:
RGPIN-2018-06702 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Discovery Grants Program - Individual