I-Corps: A conductive scaffold with a tunable mechanical and biochemical environment for spinal cord injury repair
I-Corps:具有可调机械和生化环境的导电支架,用于脊髓损伤修复
基本信息
- 批准号:2337356
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impacts and commercial potential of this I-Corps project is the development of a therapeutic technology to repair spinal cord injury. Currently, there is no treatment capable of fully restoring function following spinal cord injury. Bioengineered scaffolds to repair the spinal cord are currently being evaluated in human patients in ongoing clinical trials. However, achieving sufficient neural tissue growth to facilitate functional recovery has yet to be achieved in scaffolds implanted in small animal models. The proposed technology is designed to address the challenges of current scaffold designs by using a 3D-printed (prefabricated) scaffold surgically delivered to the site of the injury that may restore function in patients of spinal cord injury. Spinal cord injury is a devastating problem that affects thousands of patients each year in the United States with annual healthcare costs of nearly $10 billion per year. The proposed scaffold technology may advance both scientific and technological understanding related to spinal cord injury as well as improve spinal injury outcomes. This I-Corps project is based on the development of a conductive bioink that enables the fabrication of scaffolds for repairing spinal cord injury. Current scaffolds are limited in their ability to tune material properties to increase infiltration and outgrowth of host axons. The proposed scaffold is 3D-printed using digital light processing and features channels oriented in the rostral-caudal direction lined with neurogenic peptides, providing orthogonal control over topological features and cell-matrix interactions to foster axon infiltration and outgrowth to overcome previous limitations. In addition, the bioink material exhibits conductive properties that may enhance the efficacy of exercise-based rehabilitation to potentially restore function in patients. Preliminary studies in a rat model of spinal cord injury demonstrate substantial infiltration of host axons from these scaffolds. The overall goal for the proposed scaffolds is to replace the regenerative strategies currently under evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目更广泛的影响和商业潜力是开发一种修复脊髓损伤的治疗技术。目前,还没有能够完全恢复脊髓损伤后功能的治疗方法。用于修复脊髓的生物工程支架目前正在人类患者的临床试验中进行评估。然而,在植入小动物模型的支架中,尚未实现足够的神经组织生长以促进功能恢复。提出的技术旨在解决当前支架设计的挑战,通过手术将3d打印(预制)支架运送到损伤部位,可以恢复脊髓损伤患者的功能。在美国,脊髓损伤是一个毁灭性的问题,每年影响成千上万的患者,每年的医疗费用接近100亿美元。所提出的支架技术可以促进与脊髓损伤相关的科学和技术理解,并改善脊髓损伤的预后。这个I-Corps项目的基础是开发一种导电生物链接,使制造修复脊髓损伤的支架成为可能。目前的支架在调节材料特性以增加宿主轴突的浸润和生长方面的能力有限。所提出的支架是使用数字光处理进行3d打印的,其特征是在喙端-尾端方向上定向的通道,内衬神经原性肽,提供对拓扑特征和细胞-基质相互作用的正交控制,以促进轴突的浸润和生长,以克服以前的限制。此外,生物链接材料具有导电特性,可以增强基于运动的康复的功效,从而潜在地恢复患者的功能。在脊髓损伤大鼠模型中进行的初步研究表明,这些支架可大量浸润宿主轴突。拟议的支架的总体目标是取代目前正在评估的再生策略。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Galie其他文献
Peter Galie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Galie', 18)}}的其他基金
Astrocyte Mechanobiology Following Central Nervous System Injury Revealed By Magnetically Active Hydrogels
磁活性水凝胶揭示中枢神经系统损伤后的星形胶质细胞力学生物学
- 批准号:
2223318 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
The Impact of the SARS-CoV-2 Virus on the Integrity of the Blood-brain Barrier
SARS-CoV-2 病毒对血脑屏障完整性的影响
- 批准号:
2034780 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RUI: Probing the Mechanotransduction of Disturbed Flow in Brain Vasculature
RUI:探讨脑脉管系统扰动流的机械转导
- 批准号:
1728239 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
A Conductive Polymer-Stem Cell System to Augment Endogenous Stroke Repair Mechanisms and Improve Functional Stroke Recovery
导电聚合物干细胞系统可增强内源性中风修复机制并改善功能性中风恢复
- 批准号:
10585376 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Aligned and electrically conductive collagen scaffolds for guiding innervated muscle-tendon junction repair of volumetric muscle loss injuries
对齐且导电的胶原蛋白支架,用于引导神经支配的肌肉肌腱连接修复体积性肌肉损失损伤
- 批准号:
10183865 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Understanding and using microbial conductive nanowires
了解和使用微生物导电纳米线
- 批准号:
10705196 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Understanding and using microbial conductive nanowires
了解和使用微生物导电纳米线
- 批准号:
10215137 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Aligned and electrically conductive collagen scaffolds for guiding innervated muscle-tendon junction repair of volumetric muscle loss injuries
对齐且导电的胶原蛋白支架,用于引导神经支配的肌肉肌腱连接修复体积性肌肉损失损伤
- 批准号:
10578786 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Understanding and using microbial conductive nanowires
了解和使用微生物导电纳米线
- 批准号:
10380101 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Understanding and using microbial conductive nanowires
了解和使用微生物导电纳米线
- 批准号:
10915251 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Understanding and using microbial conductive nanowires
了解和使用微生物导电纳米线
- 批准号:
10665220 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Aligned and electrically conductive collagen scaffolds for guiding innervated muscle-tendon junction repair of volumetric muscle loss injuries
对齐且导电的胶原蛋白支架,用于引导神经支配的肌肉肌腱连接修复体积性肌肉损失损伤
- 批准号:
10397090 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Clinical study to enable commercialization of nonsurgical gel patch for eardrum repair
用于鼓膜修复的非手术凝胶贴片商业化的临床研究
- 批准号:
10603100 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别: