RAPID: DRL AI: Scaffolding Automated Feedback for Teachers

RAPID:DRL AI:为教师提供自动反馈的脚手架

基本信息

  • 批准号:
    2337772
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

While Artificial intelligence (AI) has the potential to improve both science, technology, engineering and mathematics (STEM) teaching practice and students' overall classroom experiences, it is critical to better understand how teachers can more easily adapt it within their classrooms. In particular, supporting AI-driven tool adoption in resource-poor schools is crucial to address educational inequities. This RAPID project addresses an urgent need to facilitate integration of AI technologies into schools to maximize benefits while reducing the burden on teachers’ time. Specifically, the goal of this project is to understand how instructional coaches can implement AI teacher feedback tools, leveraging the advantages of such tools (cost effectiveness, scalability, customizability, data-based and privacy) and mitigating technical and time barriers to adoption. The findings and products of this project will support professional learning organizations as well as district-based coaches and teachers interested in automated feedback, and has the potential to significantly increase the quality of instruction at various types of institutions. The time-sensitive research will involve interviewing highly-skilled coaches to develop scaffolding resources by leveraging existing collaborations with two teacher professional learning programs. Working with coaches and teachers who serve grade 4-8 math classrooms with a large percentage of marginalized students, the project will design generalizable coaching cycles and conversational routines that take advantage of information from automated feedback, while designing for different coaching models, different coaching contexts, and teachers with varying aptitudes for technology. The study incorporates an interview phase, a design phase for coaching cycles and routines, and a pilot phase, with room for iteration and emphasis on dissemination of the findings. Overall, the study will provide insights into how AI-driven feedback can be integrated into teacher coaching, contributing to knowledge about the challenges and opportunities of implementing AI within existing instructional processes. Ultimately, this project will help uncover how AI can be harnessed to enhance teacher effectiveness and student learning in real-world educational settings in a scalable way. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097) and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然人工智能(AI)有可能改善科学,技术,工程和数学(STEM)教学实践和学生的整体课堂体验,但更好地了解教师如何更容易地在课堂上适应它至关重要。特别是,支持在资源匮乏的学校采用人工智能驱动的工具对于解决教育不公平问题至关重要。这个RAPID项目解决了将人工智能技术融入学校的迫切需求,以最大限度地提高效益,同时减少教师的时间负担。具体来说,该项目的目标是了解教学教练如何实施人工智能教师反馈工具,利用这些工具的优势(成本效益,可扩展性,可定制性,基于数据和隐私),并减少采用的技术和时间障碍。该项目的研究结果和产品将支持专业学习组织以及对自动反馈感兴趣的地区教练和教师,并有可能显著提高各类机构的教学质量。时间敏感的研究将涉及采访高技能的教练,通过利用现有的合作与两个教师专业学习计划开发脚手架资源。该项目将与为4-8年级数学教室提供服务的教练和教师合作,这些教室中有很大一部分边缘化学生,该项目将设计可推广的辅导周期和对话程序,这些程序将利用自动反馈中的信息,同时设计不同的辅导模式,不同的辅导环境以及具有不同技术能力的教师。该研究包括一个访谈阶段,一个设计阶段的辅导周期和例程,以及一个试点阶段,与迭代的空间,并强调传播的结果。 总的来说,这项研究将深入了解人工智能驱动的反馈如何整合到教师辅导中,有助于了解在现有教学过程中实施人工智能的挑战和机遇。最终,该项目将有助于揭示如何利用人工智能以可扩展的方式在现实世界的教育环境中提高教师的效率和学生的学习。本提案是对亲爱的同事信(DCL)的回应:在正式和非正式环境中快速加速人工智能在K-12教育中的研究(NSF 23-097),并由学生和教师创新技术经验(ITEST)计划资助,该计划支持建立对实践,计划要素,有助于增加学生对科学,技术,工程,信息和通信技术(ICT)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dorottya Demszky其他文献

Computationally Identifying Funneling and Focusing Questions in Classroom Discourse
通过计算识别课堂话语中的漏斗和焦点问题
MD3: The Multi-Dialect Dataset of Dialogues
MD3:多方言对话数据集
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Eisenstein;Vinodkumar Prabhakaran;Clara Rivera;Dorottya Demszky;D. Sharma
  • 通讯作者:
    D. Sharma
Sit Down Now : How Teachers’ Language Reveals the Dynamics of Classroom Management Practices
现在坐下:教师的语言如何揭示课堂管理实践的动态
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mei Tan;Dorottya Demszky
  • 通讯作者:
    Dorottya Demszky
Analyzing the Framing of 2020 Presidential Candidates in the News
分析新闻中 2020 年总统候选人的框架
  • DOI:
    10.18653/v1/2020.winlp-1.32
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    A. Acken;Dorottya Demszky
  • 通讯作者:
    Dorottya Demszky
"Mistakes Help Us Grow": Facilitating and Evaluating Growth Mindset Supportive Language in Classrooms
“错误帮助我们成长”:在课堂上促进和评估成长心态支持性语言

Dorottya Demszky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水稻矮化卷叶基因DRL的图位克隆与作用机理研究
  • 批准号:
    31501377
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RAPID: DRL AI: Understanding Perceptions and Use of AI in K-12 Education Using a Nationally Representative Sample
RAPID:DRL AI:使用全国代表性样本了解 K-12 教育中 AI 的认知和使用
  • 批准号:
    2334172
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: A Community-Inclusive AI Chatbot to Support Teachers in Developing Culturally Focused and Universally Designed STEM Activities
RAPID:DRL AI:社区包容性 AI 聊天机器人,支持教师开展以文化为中心且通用设计的 STEM 活动
  • 批准号:
    2334631
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Unlocking the Potential of Generative AI for Equity and Access in Robotics Education
RAPID:DRL AI:释放生成式 AI 的潜力,促进机器人教育的公平和访问
  • 批准号:
    2341190
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Non-digital Hands-on AI Learning Resources for Middle-School Students
RAPID:DRL AI:面向中学生的非数字实践人工智能学习资源
  • 批准号:
    2343693
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID DRL AI: Empowering Teachers to Collaborate with Generative AI for Developing High-Quality STEM Learning Resources
RAPID DRL AI:让教师能够与生成式 AI 协作开发高质量的 STEM 学习资源
  • 批准号:
    2335975
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: The Development of a Digital Platform for Evaluating and Using AI-Generated Content for Academic Purposes
RAPID:DRL AI:开发用于评估和使用人工智能生成内容用于学术目的的数字平台
  • 批准号:
    2337969
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
  • 批准号:
    2332306
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Constructing Understandings of Generative AI and Machine Learning with High School Youth
RAPID:DRL AI:与高中生一起构建对生成式 AI 和机器学习的理解
  • 批准号:
    2335926
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Market Assessment for Deep Reinforcement Learning (DRL) based Shape Optimization for Heat Exchangers
基于深度强化学习 (DRL) 的热交换器形状优化的市场评估
  • 批准号:
    576544-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了