CAREER: Learning from NMD evasion by endogenous and viral transcripts
职业:从内源性和病毒转录本的 NMD 逃避中学习
基本信息
- 批准号:2338218
- 负责人:
- 金额:$ 130万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Robustness in biological systems relies on quality control. An important quality control step in the flow of genetic information is to eliminate faulty and/or foreign messenger RNA (mRNA) molecules so that proteins that may be harmful to the cell are not produced. One of the ways that cells can identify faulty RNAs is by sensing the length of the sequence within an RNA that encodes for a protein versus not. While this mechanism works well in simple organisms such as yeast, the human genome has evolved to have naturally long regions of mRNAs that do not encode for a protein but serve regulatory purposes. How then does the cell know to not degrade such normal transcripts and yet identify potentially toxic RNAs that arise from mutated genes or viral genomes? This project will leverage evolutionary analysis, molecular biology, and genomics tools to identify and understand signals that could allow physiological RNAs that resemble aberrant RNAs to escape quality control. The project will also promote broader societal impacts by engaging 8th- and 9th-grade students in Aurora Science and Tech, a local school that primarily serves underprivileged and low-income populations in Aurora, CO, in hands-on research to facilitate their training and exposure to scientific research. Nonsense-mediated RNA decay (NMD) is a quality control process that degrades transcripts containing premature termination codons (PTC) to prevent the production of toxic truncated proteins. NMD senses aberrant transcripts either via the presence of exon junction complexes (EJCs) downstream of the terminating ribosome or via the long 3’ untranslated region (UTR) generated by premature termination. Many non-aberrant endogenous transcripts and certain viral transcripts also mimic PTC-containing transcripts by virtue of possessing long 3’ UTRs and are also targeted by NMD. However, through the course of evolution, several transcripts with long UTRs, both viral and endogenous, have evolved mechanisms to bypass NMD by antagonizing the central NMD factor, UPF1. In this project, natural NMD evasion mechanisms will be investigated for novel insights into this fundamental quality control mechanism. The goals are to identify mechanisms of endogenous and viral bypass of long UTR NMD (Aim 1), determine the role of a mammal-specific UPF1 isoform in the arms race between NMD and its targets through experimental evolution in human and drosophila cells (Aim 2), and engage 8th-9th grade students from a local high-needs school in investigating the cross-regulation of different UPF1 paralogs and viral antagonists in yeast (Aim 3).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物系统的稳健性依赖于质量控制。遗传信息流中的一个重要质量控制步骤是消除有缺陷的和/或外来的信使RNA(mRNA)分子,以便不产生可能对细胞有害的蛋白质。细胞识别错误RNA的方法之一是通过感知RNA中编码蛋白质的序列的长度。虽然这种机制在酵母等简单生物体中运作良好,但人类基因组已经进化为具有天然的长区域mRNA,这些mRNA不编码蛋白质,但用于调节目的。那么,细胞是如何知道不降解这些正常的转录本,同时又能识别出来自突变基因或病毒基因组的潜在毒性RNA的呢?该项目将利用进化分析,分子生物学和基因组学工具来识别和理解可能允许类似异常RNA的生理RNA逃避质量控制的信号。该项目还将促进更广泛的社会影响,让Aurora Science and Tech的8年级和9年级学生参与,Aurora Science and Tech是一所当地学校,主要为Aurora的贫困和低收入人群提供服务,CO,实践研究,以促进他们的培训和接触科学研究。无义介导的RNA衰变(NMD)是一种质量控制过程,其降解含有提前终止密码子(PTC)的转录物以防止有毒截短蛋白的产生。NMD通过终止核糖体下游外显子连接复合物(EJC)的存在或通过过早终止产生的长3 '非翻译区(UTR)来感测异常转录物。许多非异常内源性转录物和某些病毒转录物也通过具有长3'UTR而模拟含PTC的转录物,并且也被NMD靶向。然而,在进化过程中,几种具有长UTR的转录物,包括病毒和内源性的,已经进化出通过拮抗中心NMD因子UPF1来绕过NMD的机制。在这个项目中,自然的NMD规避机制将调查新的见解,这一基本的质量控制机制。目标是鉴定长UTR NMD的内源性和病毒旁路机制(Aim 1),通过在人类和果蝇细胞中的实验进化确定哺乳动物特异性UPF1同种型在NMD及其靶标之间的军备竞赛中的作用(Aim 2),并让当地一所高需求学校的8 - 9年级学生参与调查酵母中不同UPF1旁系同源物和病毒拮抗剂的交叉调节(该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sujatha Jagannathan其他文献
Systematic analysis of nonsense variants uncovers peptide release rate as a novel modifier of nonsense-mediated mRNA decay
- DOI:
10.1016/j.xgen.2025.100882 - 发表时间:
2025-07-09 - 期刊:
- 影响因子:9.000
- 作者:
Divya Kolakada;Rui Fu;Nikita Biziaev;Alexey Shuvalov;Mlana Lore;Amy E. Campbell;Michael A. Cortázar;Marcin P. Sajek;Jay R. Hesselberth;Neelanjan Mukherjee;Elena Alkalaeva;Zeynep H. Coban-Akdemir;Sujatha Jagannathan - 通讯作者:
Sujatha Jagannathan
The evolution of emDUX4/em gene regulation and its implication for facioscapulohumeral muscular dystrophy
emDUX4/em 基因调控的进化及其对面肩肱型肌营养不良的意义
- DOI:
10.1016/j.bbadis.2022.166367 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:4.200
- 作者:
Sujatha Jagannathan - 通讯作者:
Sujatha Jagannathan
Sujatha Jagannathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
- 批准号:
DE240101089 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Research Grant














{{item.name}}会员




