CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
基本信息
- 批准号:2338365
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the landscape of computing, the demand for innovative hardware architectures is ever-growing, driving advancements in computer architecture. However, the conventional Register Transfer Level (RTL) design approach is time-consuming and labor-intensive. This project aims to facilitate the broader adoption of High-Level Synthesis (HLS) tools to significantly reduce design time, particularly for general architectural design. HLS tools enable higher-level programming and automatic synthesis, yet their application in comprehensive computer architecture studies remains limited. The significance of this project lies in promoting agile hardware development by fundamentally innovating HLS tools, overcoming the productivity challenges at the register transfer level, and unlocking the potential for more widespread application of HLS in diverse computing domains. The developed tool chain will be publicly available and exposed to more users by organizing tutorials, workshops, and demo events. The research will be integrated into education programs with activities on research training for undergraduate and master students, including online students, recruitment and retention of students from underrepresented groups, curriculum development, and innovative international design competitions co-hosted with industry.This project aims to revolutionize High-Level Synthesis (HLS) tools by introducing a next-generation tool, ArchHLS, addressing two major research challenges. First, HLS tools are superior in synthesizing a specific algorithm into hardware but have limited capability for general domain-specific architecture designs. Second, it is challenging to design general architectures with compatible compilers and to automatically improve the underlying architecture for evolving workloads. To address these challenges, ArchHLS facilitates agile hardware development by making three key innovations. First, ArchHLS decouples architectural design and workload mapping, allowing flexible architecture extraction and customized control flow. Second, ArchHLS automates architecture evolution to adapt to fast-changing algorithms via automated workload compilation, mapping, and computation pattern matching. Third, ArchHLS enables comprehensive and accurate performance profiling for designs to provide feedback for architecture evolution. Beyond advancing Electronic Design Automation (EDA) tooling, this research has broader societal implications, aligning with the grand vision of sustainability for computing and computing for sustainability, such as climate modeling and scientific computing. The public availability of the toolchain fosters research dissemination, educational integration, and inclusivity efforts, aiming to benefit diverse communities and promote efficient algorithm/architecture co-design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在计算领域,对创新硬件体系结构的需求不断增长,推动了计算机体系结构的进步。然而,传统的寄存器传输级(RTL)设计方法费时费力。该项目旨在促进更广泛地采用高级综合(HLS)工具,以显著缩短设计时间,特别是在一般建筑设计中。HLS工具使更高级别的编程和自动综合成为可能,但它们在全面的计算机体系结构研究中的应用仍然有限。该项目的意义在于通过从根本上创新HLS工具来促进敏捷的硬件开发,克服寄存器传输级别的生产率挑战,并释放HLS在不同计算领域更广泛应用的潜力。开发的工具链将公开提供,并通过组织教程、研讨会和演示活动向更多用户展示。这项研究将被整合到教育项目中,为本科生和硕士学生开展研究培训活动,包括在线学生、从代表性不足的群体中招募和留住学生、课程开发以及与行业联合举办的创新国际设计竞赛。该项目旨在通过引入下一代工具ArchHLS来革新高级综合(HLS)工具,以应对两个主要的研究挑战。首先,HLS工具在将特定算法合成到硬件方面具有优势,但在一般领域特定的体系结构设计中能力有限。其次,使用兼容的编译器设计通用体系结构并自动改进不断变化的工作负载的底层体系结构是具有挑战性的。为了应对这些挑战,ArchHLS通过三项关键创新促进了灵活的硬件开发。首先,ArchHLS分离了体系结构设计和工作负载映射,允许灵活的体系结构提取和定制的控制流。其次,ArchHLS通过自动化的工作负载编译、映射和计算模式匹配,使体系结构演化自动化,以适应快速变化的算法。第三,ArchHLS支持对设计进行全面而准确的性能分析,为架构发展提供反馈。除了先进的电子设计自动化(EDA)工具,这项研究还具有更广泛的社会影响,与计算的可持续性和计算的可持续性的宏伟愿景保持一致,例如气候建模和科学计算。工具链的公开使用促进了研究传播、教育整合和包容性努力,旨在使不同的社区受益,并促进高效的算法/架构联合设计。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Hao其他文献
Broadband QDs array LED using selective MOVPE growth
使用选择性 MOVPE 生长的宽带 QD 阵列 LED
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Cong Hao;Song Chen;Takeshi Yoshimura;立木実;K. Shimomura - 通讯作者:
K. Shimomura
An Efficient Tabu Search Methodology for Port Assignment Problem in High-Level Synthesis
高层次综合中端口分配问题的高效禁忌搜索方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Cong Hao;Nan Wang;Jian-Mo Ni and Takeshi Yoshimura - 通讯作者:
Jian-Mo Ni and Takeshi Yoshimura
Economical Smart Home Scheduling for Single and Multiple Users
针对单个和多个用户的经济智能家居调度
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Cong Hao;Takeshi Yoshimura - 通讯作者:
Takeshi Yoshimura
Thermal-Aware Floorplanning for NoC-Sprinting
NoC-Sprinting 的热感知布局规划
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hui Zhu;Cong Hao;Takeshi Yoshimura - 通讯作者:
Takeshi Yoshimura
An Efficient Algorithm for 3D-IC TSV Assignment
3D-IC TSV 分配的高效算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Cong Hao;Nan Ding;Takeshi Yoshimura - 通讯作者:
Takeshi Yoshimura
Cong Hao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Hao', 18)}}的其他基金
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
具有通用性和可解释性的机器学习辅助建模和近似计算设计
- 批准号:
2202329 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CAREER: LoRa Enabled Space-air-ground Integrated Networks for Next-Generation Agricultural IoT
职业生涯:LoRa 支持下一代农业物联网的天地一体化网络
- 批准号:
2338976 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
- 批准号:
2340306 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
- 批准号:
2422750 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
- 批准号:
2340782 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CAREER: Engineering next-generation adrenal gland organoids
职业:设计下一代肾上腺类器官
- 批准号:
2335133 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
- 批准号:
2238365 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant