CAREER: Advancing ceramic processing science through acoustic characterization

职业:通过声学表征推进陶瓷加工科学

基本信息

  • 批准号:
    2338898
  • 负责人:
  • 金额:
    $ 69.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

Non-technical AbstractThis CAREER award project explores the development of dense polycrystalline ceramic materials through a process known as cold sintering. Traditional sintering methods, which involve a combination of heat and pressure, require extensive time and high temperatures to achieve desired densities, microstructures, and properties in the final ceramic product. In contrast, cold sintering presents a more energy efficient alternative, significantly reducing processing times to between 5 to 60 minutes and lower temperatures. Thus, cold sintering can provide an eco-friendly alternative to manufacturing electroceramics, which is likely to become an increasingly relevant issue in developing new technologies across industries. However, despite achieving high relative densities, some materials produced via cold sintering do not exhibit mechanical or functional properties comparable with those created through conventional sintering methods. With this CAREER award, supported by the Ceramics program in NSF’s Division of Materials Research, the principal investigator and her research group investigate connections between the processing methods, microstructural outcomes, and properties of cold sintered materials. The project involves developing a multifaceted characterization approach, emphasizing acoustic measurement techniques, for this investigation. The research could eventually lead to large-scale manufacturing feasibility by uncovering the underlying mechanisms that ensure uniform, high-performing, functional ceramics components prepared by cold sintering. Leveraging the interdisciplinary nature of the research, the project provides targeted educational experiences for students and professionals at various stages. Activities planned include development of comprehensive educational materials and an immersive summer program designed to spark interest and understanding in sound and wave propagation among elementary school students, particularly young girls and students of Hispanic heritage.Technical AbstractThis CAREER award, supported by the Ceramics program in NSF’s Division of Materials Research, advances the fundamental understanding of the role processing conditions play regarding the resulting structure of cold sintered components using multi-modal and real-time monitoring of the manufacturing process. More specifically, this CAREER project examines the use of acoustic methods to characterize micro- and macro-flaws in cold sintered specimens, yielding a fundamental understanding of the primary mechanisms impacting the ceramic sintering process. The initial nondestructive assessment of effective properties and structures using acoustic methods facilitates targeted characterization at significantly smaller scales using conventional methods including X-ray computed tomography and electron microscopy. By studying the influence of various processing parameters on the resulting microstructure and properties of cold sintered parts, this project provides the fundamental understanding to enable eco-friendly, energy-efficient production of a large suite of material systems, including ceramics and organic-inorganic hybrid materials. This general foundation is critical in the characterization of other novel ceramic processing approaches and newly developed material systems. The methods the principal investigator and her research group use also help advance existing models of elastic wave propagation and scattering by incorporating the effects of piezoelectric coupling through modified effective medium models and complex microstructural features through representative volume element approaches. These methods provide a significant advancement in the field of nondestructive material characterization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这个CAREER奖项目探索了通过冷烧结工艺开发致密多晶陶瓷材料。传统的烧结方法涉及热和压力的组合,需要大量的时间和高温来实现最终陶瓷产品的所需密度、微观结构和性能。相比之下,冷烧结提供了一种更节能的替代方案,将加工时间显著缩短至5至60分钟,并降低了温度。因此,冷烧结可以为制造电瓷提供一种生态友好的替代方案,这可能成为跨行业开发新技术的一个日益相关的问题。然而,尽管实现了高相对密度,但通过冷烧结生产的一些材料并不表现出与通过传统烧结方法产生的材料可比的机械或功能性能。在NSF材料研究部陶瓷项目的支持下,首席研究员和她的研究小组研究了冷烧结材料的加工方法、微观结构结果和性能之间的联系。该项目涉及开发一个多方面的表征方法,强调声学测量技术,为这项调查。该研究最终可能通过揭示确保通过冷烧结制备均匀,高性能,功能性陶瓷部件的潜在机制来实现大规模制造的可行性。利用研究的跨学科性质,该项目为各个阶段的学生和专业人士提供有针对性的教育经验。计划的活动包括开发全面的教育材料和一个沉浸式的暑期项目,旨在激发小学生,特别是年轻女孩和西班牙裔学生对声音和波传播的兴趣和理解。使用制造过程的多模态和实时监测,推进了对加工条件在冷烧结部件的最终结构方面所起作用的基本理解。更具体地说,这个CAREER项目研究了使用声学方法来表征冷烧结试样中的微观和宏观缺陷,从而对影响陶瓷烧结过程的主要机制有了基本的了解。使用声学方法对有效属性和结构进行初始无损评估,有助于使用常规方法(包括X射线计算机断层扫描和电子显微镜)在显著较小的尺度上进行有针对性的表征。通过研究各种工艺参数对冷烧结部件的微观结构和性能的影响,该项目提供了基本的理解,以实现环保,节能的生产一系列材料系统,包括陶瓷和有机-无机混合材料。这一基础对于其他新型陶瓷加工方法和新开发的材料系统的表征至关重要。主要研究者和她的研究小组使用的方法也有助于推进现有的弹性波传播和散射模型,通过修改的有效介质模型和复杂的微观结构特征,通过代表性的体积元方法结合压电耦合的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Arguelles其他文献

Andrea Arguelles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Arguelles', 18)}}的其他基金

Collaborative Research: Particle Reinforced Ice as a Tunable Acoustic Couplant
合作研究:粒子强化冰作为可调声耦合剂
  • 批准号:
    2029142
  • 财政年份:
    2021
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant

相似海外基金

Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Research Grant
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
  • 批准号:
    DP240100968
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Discovery Projects
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Research Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
  • 批准号:
    2345355
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Cooperative Agreement
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Standard Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
  • 批准号:
    24K17324
  • 财政年份:
    2024
  • 资助金额:
    $ 69.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了