CAREER: Mechano-Metabolic Control of Electrical Remodeling of Human Induced Pluripotent Stem Cell Derived Engineered Heart Muscle
职业:人类诱导多能干细胞衍生的工程心肌电重塑的机械代谢控制
基本信息
- 批准号:2338931
- 负责人:
- 金额:$ 69.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award supports research to understand how to grow heart muscle from stem cells in the laboratory and use that muscle to predict how drugs will affect patients’ hearts. Induced pluripotent stem cells (iPSC) are cells from healthy adult patients that are “rewired” so that they can form any type of cell found in the body. Currently, heart muscle grown from iPSC in the laboratory is more similar to heart muscle in a fetus than an adult. This means that lab grown muscle does not accurately predict the way drugs will affect patients. This is a major obstacle to developing drugs to treat heart disease, the leading cause of death in the United States. Shortly after birth, babies’ hearts must pump with stronger force because their blood pressure increases. At the same time, their hearts’ energy source shifts from sugar to fat. Previous research suggests that individually mimicking these changes in mechanical resistance to pumping, or changing the energy source from sugar to fat, can enhance lab-grown heart muscle. This research project will support combining those changes, with the goal of producing muscle that more accurately predicts the way drugs will affect patients. In addition, planned collaborations between the scientists performing this work and local high school teachers will expose students who are underrepresented in the STEM pipeline to science and engineering. In the perinatal and postnatal stages of heart development, mechanical forces on the heart (preload and afterload) increase. Concurrently, ATP-sourcing switches from glucose to fatty acids. This research hypothesizes that mechanical loading and ATP-sourcing act in a synergistic manner to elicit electrical maturation of cardiomyocytes derived from iPSC by regulating Peroxisome Proliferator Activated Receptor (PPAR) signaling. To address this hypothesis, the PI will leverage a high-throughput, iPSC-derived micro-heart muscle array technology. Biophysical cues applied to the micro-tissues will be controlled using linear actuators to stretch tissue (preload) and magneto-rheoelastomeric substrates to control the rigidity of the substrate tissues work against (afterload). Overall changes in micro-tissue electrophysiology will be determined using voltage sensitive dye, genetic calcium indicator (GCaMP6f), high-speed microscopy and automated video analyses. Using a combination of ion channel specific blocking drugs, immunostaining and RNAseq, these overall changes in electrophysiology will be linked to changes in expression of specific ion channels. Finally, a series of studies with PPAR-pathway modifying drugs will be performed to specifically probe the role for the PPAR-pathway in electrical maturation of iPSC-cardiomyocytes. The overarching focus of the research is to obtain deep understanding of how mechanical cues synergize with soluble, chemical cues like the metabolic substrate, to affect cellular fate and function. This project will allow the PI to advance the knowledge base in mechanobiology and establish his long-term bioengineering career.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CALEAR)奖支持研究,以了解如何在实验室从干细胞培养心肌,并使用这些肌肉来预测药物将如何影响患者的心脏。诱导多能干细胞(IPSC)是来自健康成年患者的细胞,经过重新连接,可以形成体内发现的任何类型的细胞。目前,在实验室从iPSC培养出的心肌更类似于胎儿的心肌,而不是成年人的心肌。这意味着实验室培养的肌肉不能准确预测药物对患者的影响。这是开发治疗心脏病的药物的主要障碍,心脏病是美国的主要死亡原因。出生后不久,婴儿的心脏必须以更强大的力量跳动,因为他们的血压会上升。与此同时,他们心脏的能量来源从糖转移到脂肪。先前的研究表明,单独模仿这些机械阻力的变化,或者将能量来源从糖改变为脂肪,可以增强实验室培养的心肌。这项研究项目将支持将这些变化结合起来,目标是产生更准确地预测药物对患者影响的肌肉。此外,执行这项工作的科学家和当地高中教师之间有计划的合作将使在STEM渠道中代表性不足的学生接触到科学和工程专业。在心脏发育的围产期和出生后阶段,心脏上的机械力(前负荷和后负荷)增加。与此同时,ATP来源从葡萄糖转向脂肪酸。本研究假设机械负荷和三磷酸腺苷来源通过调节过氧化体增殖物激活受体(PPAR)信号通路协同作用,诱导IPSC来源的心肌细胞电成熟。为了解决这一假设,PI将利用高通量、IPSC衍生的微心肌阵列技术。施加到微组织的生物物理线索将使用线性致动器来控制,以拉伸组织(预加载)和磁流变弹性体衬底,以控制衬底组织工作的刚性(后加载)。微组织电生理学的整体变化将使用电压敏感染料、遗传钙指示器(GCaMP6f)、高速显微镜和自动视频分析来确定。结合使用离子通道特异性阻断药物、免疫染色和RNAseq,这些电生理学的整体变化将与特定离子通道表达的变化联系在一起。最后,将进行一系列PPAR途径修饰药物的研究,以具体探讨PPAR途径在IPSC-心肌细胞电成熟中的作用。这项研究的首要重点是深入了解机械信号如何与代谢底物等可溶的化学信号协同作用,以影响细胞的命运和功能。这个项目将允许PI推进机械生物学的知识基础,并建立他长期的生物工程职业生涯。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel Huebsch其他文献
Mechanical Resistance to Micro-Heart Tissue Contractility unveils early Structural and Functional Pathology in iPSC Models of Hypertrophic Cardiomyopathy
对微心脏组织收缩性的机械阻力揭示了肥厚性心肌病 iPSC 模型的早期结构和功能病理学
- DOI:
10.1101/2023.10.30.564856 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jingxuan Guo;Huanzhu Jiang;David R Schuftan;Jonathan D. Moreno;G. Ramahdita;Lavanya Aryan;D. Bhagavan;Jonathan Silva;Nathaniel Huebsch - 通讯作者:
Nathaniel Huebsch
Characterization of a composite injury model of severe lower limb bone and nerve trauma
严重下肢骨神经损伤复合损伤模型的表征
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
Brent A. Uhrig;I. Clements;J. Boerckel;Nathaniel Huebsch;R. Bellamkonda;R. Guldberg - 通讯作者:
R. Guldberg
ALTERED PHASE SEPARATION OF CRYAB PROTEIN, A CARDIAC-ENRICHED CHAPERONE, PROVOKES PROTEOTOXICITY IN ISCHEMIC CARDIOMYOPATHY
- DOI:
10.1016/s0735-1097(23)00862-8 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Md Moydul Islam;Walter Navid;Carla Weinheimer;Jessica Nigro;David Rawnsley;Babak Razani;Simon Sedej;Ali Javaheri;Nathaniel Huebsch;Douglas Covey;Kartik Mani;Abhinav Diwan - 通讯作者:
Abhinav Diwan
Tension anisotropy drives fibroblast phenotypic transition by self-reinforcing cell–extracellular matrix mechanical feedback
张力各向异性通过自我强化的细胞-细胞外基质机械反馈驱动成纤维细胞表型转变
- DOI:
10.1038/s41563-025-02162-5 - 发表时间:
2025-03-24 - 期刊:
- 影响因子:38.500
- 作者:
Farid Alisafaei;Delaram Shakiba;Yuan Hong;Ghiska Ramahdita;Yuxuan Huang;Leanne E. Iannucci;Matthew D. Davidson;Mohammad Jafari;Jin Qian;Chengqing Qu;David Ju;Dashiell R. Flory;Yin-Yuan Huang;Prashant Gupta;Shumeng Jiang;Aliza Mujahid;Srikanth Singamaneni;Kenneth M. Pryse;Pen-hsiu Grace Chao;Jason A. Burdick;Spencer P. Lake;Elliot L. Elson;Nathaniel Huebsch;Vivek B. Shenoy;Guy M. Genin - 通讯作者:
Guy M. Genin
Recovery from hind limb ischemia enhances rhBMP-2-mediated segmental bone defect repair in a rat composite injury model.
在大鼠复合损伤模型中,后肢缺血恢复增强了 rhBMP-2 介导的节段性骨缺损修复。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:4.1
- 作者:
Brent A. Uhrig;J. Boerckel;N. Willett;M. Li;Nathaniel Huebsch;R. Guldberg - 通讯作者:
R. Guldberg
Nathaniel Huebsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
一种基于电机电流信号特征代理传递的轴承故障检测方法
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
激光加工用高速二维声光扫描器研发与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度学习的复杂机电系统小样本故障检测-诊断-预测全链条方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
能量采集机电系统动力学设计理论与调控方法
- 批准号:2025JJ20012
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向兆瓦级大型飞机电力通断的特种曲
面触头电弧等离子体特性研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
新能源汽车驱动电机电磁噪声主动控制技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
窄谱带有机电致发光材料与器件
- 批准号:
- 批准年份:2025
- 资助金额:100.0 万元
- 项目类别:省市级项目
三维微机电薄膜谐振器的二维板方程构建及高频振动研究
- 批准号:QN25A020009
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无感化生命体征监测床垫
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
混动商用车机电耦合冷却系统驱动器开发与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 69.57万 - 项目类别:
Discovery Projects
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
- 批准号:
EP/Y036948/1 - 财政年份:2024
- 资助金额:
$ 69.57万 - 项目类别:
Research Grant
Probing the mechano-biology of cell-cell adhesion in a novel single cell assay
在新型单细胞测定中探讨细胞间粘附的力学生物学
- 批准号:
EP/Y002245/1 - 财政年份:2024
- 资助金额:
$ 69.57万 - 项目类别:
Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
- 批准号:
EP/Y036565/1 - 财政年份:2024
- 资助金额:
$ 69.57万 - 项目类别:
Research Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
- 批准号:
2327493 - 财政年份:2024
- 资助金额:
$ 69.57万 - 项目类别:
Standard Grant
Novel mechano-signalling pathways at sites of cellular adhesion
细胞粘附位点的新型机械信号传导途径
- 批准号:
DP240101768 - 财政年份:2024
- 资助金额:
$ 69.57万 - 项目类别:
Discovery Projects
Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics
合作研究:软机器人的嵌入式机械智能
- 批准号:
2314560 - 财政年份:2023
- 资助金额:
$ 69.57万 - 项目类别:
Standard Grant
Mechano-geometrical cell interface for generating hiPSC derived higher order gastruloid
用于生成 hiPSC 衍生的高阶原肠胚的机械几何细胞接口
- 批准号:
23K17205 - 财政年份:2023
- 资助金额:
$ 69.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Comprehending the intracellular mechanotransduction system by 3D mechano-mapping of the cytoskeleton
通过细胞骨架的 3D 力学映射理解细胞内力学转导系统
- 批准号:
23K18135 - 财政年份:2023
- 资助金额:
$ 69.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Mechano-responsive synthetic cells to engineer the immune response
机械响应合成细胞可设计免疫反应
- 批准号:
EP/X016587/1 - 财政年份:2023
- 资助金额:
$ 69.57万 - 项目类别:
Fellowship