CAREER: Bridging Infrared and Visible Photonics with Chip-ready Nonlinear and Quantum Metadevices
职业:通过芯片就绪的非线性和量子元设备桥接红外和可见光光子学
基本信息
- 批准号:2339271
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photonics is a powerful technology that enables ever-growing data transfer and inspires novel energy-efficient and reconfigurable architectures that will empower the computers of the future. However, the present diversity of colors in photonic chips calls for a universal approach to transfer signals from one light frequency to another. Currently, chips carry near-infrared signals for communication, visible signals for imaging, and mid-infrared for thermal radiation and sensing applications. Conversion between these chips through electronics-driven detection and emission limits efficiency and operation speed. This research effort addresses the problem of efficient frequency conversion on a chip. It connects signals across five octaves of light through nonlinear and quantum light-matter interactions in designer nanostructures called photonic-phononic metasurfaces. Photonic-phononic metasurfaces will be conceived using modern tools of nanotechnology, as well as rigorous numerical design approaches and state-of-the-art optical testing tools, including femtosecond lasers and single-photon correlation techniques. The results of this research will pave the way to better, more efficient signaling on a chip, which will allow seamless integration of heterogeneous photonic platforms and chiplets. An essential component of this project is an integrated educational effort to train a diverse group of future semiconductor microelectronics and quantum information specialists. Through clean room training, hands-on experience with quantum communication protocols, and public talks, the project’s team will play an important role in shaping the landscape of high-tech research and education of tomorrow.This CAREER project aims to bridge the gap between mid-, near-infrared, and visible photonics at the nanoscale by exploring nonlinear and quantum light-matter interactions. Over five years, the foundation for connecting light frequencies across five octaves between the visible and mid-infrared in nanoscale devices will be developed. The three main objectives include unraveling the fundamental properties of co-designed photonic-phononic metasurfaces based on a combination of phonon-polaritonic materials (hBN, MoO3) and resonant dielectric nanostructures; facilitating wave-mixing of photons across different frequencies; and employing mid-infrared drive for single-photon emission in strained two-dimensional materials. To achieve these objectives, full-wave analysis, nanomechanical co-design, nanoscale fabrication and characterization tools, near-field microscopy, femtosecond spectroscopy, and correlation measurements will be used. The project holds intellectual merit in exploring the nonlinear and quantum properties of phonon-polaritonic materials, offering a framework for on-chip light management with unprecedented bandwidth, footprint, and efficiency. The broader impacts extend to influencing society through advancements in on-chip photonics, impacting computing, signal processing, telecommunication, quantum information, and biophotonics. The project integrates research and education through semiconductor- and quantum-ready education and workforce development activities. Clean room training for a diverse body of participants, hands-on experience with quantum communication protocols, and public talks will provide training opportunities and inclusion efforts in collaboration with academic and regional organizations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光子学是一项强大的技术,它能够实现不断增长的数据传输,并激发出新的节能和可重新配置的架构,这些架构将为未来的计算机提供动力。然而,目前光子芯片中颜色的多样性需要一种通用的方法来将信号从一个光频率传输到另一个光频率。目前,芯片携带近红外信号用于通信,可见光信号用于成像,中红外信号用于热辐射和传感应用。这些芯片之间通过电子驱动的检测和发射进行转换,限制了效率和运行速度。这项研究工作解决了在芯片上进行高效频率转换的问题。它通过被称为光子-声子亚表面的设计纳米结构中的非线性和量子光与物质的相互作用,将信号连接到五个八度的光。将使用现代纳米技术工具以及严格的数值设计方法和最先进的光学测试工具,包括飞秒激光和单光子相关技术来构思光子-声子亚表面。这项研究的结果将为在芯片上更好、更有效地发送信号铺平道路,这将允许不同类型的光子平台和芯片的无缝集成。该项目的一个重要组成部分是综合教育努力,以培养一批未来的半导体微电子学和量子信息专家。通过无尘室培训、量子通信协议实践经验和公开演讲,该项目团队将在塑造未来高科技研究和教育的格局中发挥重要作用。这个职业项目旨在通过探索非线性和量子光与物质的相互作用,在纳米尺度上弥合中、近红外和可见光子学之间的差距。在五年的时间里,将开发出在纳米级设备的可见光和中红外之间连接五个八度的光频率的基础。三个主要目标包括:揭示基于声子-极化电子材料(hBN,MoO_3)和共振介电纳米结构组合的共同设计的光子-声子亚表面的基本性质;促进不同频率的光子的混波;以及利用中红外驱动在应变二维材料中进行单光子发射。为了实现这些目标,将使用全波分析、纳米机械联合设计、纳米制造和表征工具、近场显微镜、飞秒光谱和相关测量。该项目在探索声子-极化子材料的非线性和量子性质方面具有智力优势,为片上光管理提供了一个具有前所未有的带宽、占地面积和效率的框架。更广泛的影响延伸到通过芯片上光子学、影响计算、信号处理、电信、量子信息和生物光子学的进步来影响社会。该项目通过半导体和量子就绪的教育和劳动力发展活动将研究和教育结合在一起。为不同参与者提供的无尘室培训、量子通信协议的实践经验和公开演讲将提供培训机会,并与学术和区域组织合作努力纳入。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Shcherbakov其他文献
Maxim Shcherbakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
- 批准号:
2338178 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
- 批准号:
2338233 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Cybersecurity Workforce: Bridging the Gap in Appalachian Ohio (Cyber-Workforce)
网络安全劳动力:缩小俄亥俄州阿巴拉契亚地区的差距(网络劳动力)
- 批准号:
2350520 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Bridging fields and expanding research opportunities with the timescale of life
弥合不同领域并扩大研究机会与生命的时间尺度
- 批准号:
2318917 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Conference: Bridging Child Language Research to Practice for Language Revitalization
会议:将儿童语言研究与语言复兴实践联系起来
- 批准号:
2331639 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Bridging Economic Demands with Social Responsibility: A Deep Dive into SMFDI's Production-Driven CSR Initiatives
连接经济需求与社会责任:深入探讨 SMFDI 的生产驱动型企业社会责任计划
- 批准号:
24K20993 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BRIDGEGAP - Bridging the Gaps in Evidence, Regulation and Impact of Anticorruption Policies
BRIDGEGAP - 缩小反腐败政策的证据、监管和影响方面的差距
- 批准号:
10110711 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
EU-Funded
BRC-BIO: The origin and genetic makeup of rare plants: bridging micro- and macroevolution in the California Floristic Province
BRC-BIO:稀有植物的起源和基因组成:连接加州植物省的微观和宏观进化
- 批准号:
2334849 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CC* CIRA: Bridging the Digital Chasm HPC for ALL
CC* CIRA:为所有人弥合数字鸿沟 HPC
- 批准号:
2346713 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Bridging Histories: Creative Changemaker Network & Consultancy
架起历史桥梁:创意变革者网络
- 批准号:
ES/Y011074/1 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Research Grant