CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting

职业:通过数学模型确定新的凝血调节机制

基本信息

项目摘要

This CAREER project will develop new mathematical models and numerical methods for simulating blood clotting and identifying regulatory mechanisms within the blood clotting system. In response to vessel injuries, blood will clot to prevent bleeding. The clotting response is complex and involves numerous biochemical and biophysical components working together under the influence of flow. Certain diseases or drugs may cause clots to form improperly, resulting in life-threatening bleeding or pathological clot growth with vessel occlusion. Due to the intricate biochemical and biophysical aspects of the clotting system, predicting its responses and identifying the regulatory mechanisms underlying these responses is difficult. Mathematical models of blood clotting provide powerful tools for designing new drugs, experiments, and patient-specific therapies, but there are still great challenges in formulating such models. This research focuses on developing new mathematical models of essential biochemical players and their involvement in complex biophysical processes. These models will be used to test hypotheses related to regulation of blood clotting and optimal drug design. Additionally, graduate students will be trained in interdisciplinary research and help to organize summer workshops in mathematical biology. The workshops will be offered to local community college students, with the goal being their recruitment and retention into four-year programs by offering active learning, faculty and graduate student mentoring, peer networking, and timely advising. This research will build a comprehensive modeling framework coupling the biochemistry, biophysics, and biomechanics of blood clotting. It will address mechanistic questions about regulating the generation and sequestration of thrombin, the most important enzyme in the clotting process. Specifically, the research will focus on (1) development of a mathematical model that accurately describes thrombin's binding to fibrin (the polymer that stabilizes growing blood clots) and explains the extended periods of time that thrombin has been observed to stay bound to fibrin under flow, (2) development of a mathematical model that incorporates a new, platelet-dependent mechanism to inhibit thrombin generation and explains observed inhibition under flow, and (3) development of a new numerical method to model platelets as discrete objects immersed in a fluid, interacting elastically, responding to molecules in the surrounding fluid, and carrying information via molecules bound to their surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个CAREER项目将开发新的数学模型和数值方法,用于模拟血液凝固和识别血液凝固系统中的调节机制。在血管损伤时,血液会凝结以防止出血。凝血反应是复杂的,并且涉及在流动的影响下一起工作的许多生物化学和生物物理组分。某些疾病或药物可能导致凝块形成不当,导致危及生命的出血或病理性凝块生长伴血管闭塞。由于凝血系统复杂的生物化学和生物物理学方面,预测其反应和确定这些反应的调控机制是困难的。血液凝固的数学模型为设计新药、实验和患者特异性治疗提供了强大的工具,但在制定此类模型方面仍存在巨大挑战。这项研究的重点是开发新的数学模型的基本生化球员和他们参与复杂的生物物理过程。这些模型将用于检验与凝血调节和最佳药物设计相关的假设。此外,研究生将接受跨学科研究的培训,并帮助组织数学生物学的夏季研讨会。这些研讨会将提供给当地社区学院的学生,目标是通过提供积极的学习,教师和研究生指导,同行网络和及时的建议,他们的招聘和保留到四年制课程。本研究将建立一个耦合血液凝固的生物化学、生物物理学和生物力学的综合建模框架。它将解决有关调节凝血过程中最重要的酶凝血酶的产生和隔离的机械问题。具体来说,研究将集中在(1)开发一个数学模型,准确地描述凝血酶的结合纤维蛋白(稳定生长的血凝块的聚合物)并解释了凝血酶在流动下保持与纤维蛋白结合的延长的时间段,(2)开发了一种数学模型,该模型结合了一种新的,血小板依赖性机制抑制凝血酶生成,并解释了在流动下观察到的抑制,以及(3)开发了一种新的数值方法,将血小板建模为浸入流体中的离散物体,弹性相互作用,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karin Leiderman其他文献

Mathematical Modeling to Identify Clotting Factor Combinations That Modify Thrombin Generation in Hemophilia
  • DOI:
    10.1182/blood-2022-169016
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Stobb;Dougald Monroe;Keith B. Neeves;Suzanne Sindi;Aaron Fogelson;Karin Leiderman
  • 通讯作者:
    Karin Leiderman
Mathematical Models of Thrombus Formation and Fibrinolysis
血栓形成和纤溶的数学模型
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karin Leiderman;Brittany E. Bannish;Michael A. Kelley;Ada M. Palmisano
  • 通讯作者:
    Ada M. Palmisano
Mathematical Models of Hemostasis
止血的数学模型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Neeves;Karin Leiderman
  • 通讯作者:
    Karin Leiderman
A fast method to compute triply-periodic Brinkman flows
计算三周期 Brinkman 流的快速方法
  • DOI:
    10.1016/j.compfluid.2016.04.007
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Hoang;S. Olson;Karin Leiderman
  • 通讯作者:
    Karin Leiderman
Weak inertial effects on arbitrarily shaped objects in the presence of a wall
在有墙的情况下,对任意形状的物体的弱惯性影响
  • DOI:
    10.1103/physrevfluids.5.044102
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Forest O. Mannan;Karin Leiderman
  • 通讯作者:
    Karin Leiderman

Karin Leiderman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karin Leiderman', 18)}}的其他基金

CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting
职业:通过数学模型确定新的凝血调节机制
  • 批准号:
    1848221
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Computational Models of Cilia and Flagella in a Brinkman Fluid
合作研究:Brinkman 流体中纤毛和鞭毛的计算模型
  • 批准号:
    1743962
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Models of Cilia and Flagella in a Brinkman Fluid
合作研究:Brinkman 流体中纤毛和鞭毛的计算模型
  • 批准号:
    1413078
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    2414705
  • 财政年份:
    2024
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    1846690
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting
职业:通过数学模型确定新的凝血调节机制
  • 批准号:
    1848221
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling, Physical Experiments, and Biological Data for Understanding Flow Interactions in Collective Locomotion
职业:通过数学建模、物理实验和生物数据来理解集体运动中的流相互作用
  • 批准号:
    1847955
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling and Computational Tools for in vivo Astrocyte Activity
职业:体内星形胶质细胞活性的数学建模和计算工具
  • 批准号:
    1750931
  • 财政年份:
    2018
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical modeling of angiogenesis signaling and crosstalk in tumor cells
职业:肿瘤细胞中血管生成信号传导和串扰的数学模型
  • 批准号:
    1552065
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
CAREER: Mathematical Modeling and Computational Studies of Human Seizure Initiation and Spread
职业:人类癫痫发作和传播的数学建模和计算研究
  • 批准号:
    1451384
  • 财政年份:
    2015
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: MPS-BIO: Mathematical Modeling and Experiments of Neuromechanical Pumping
职业:MPS-BIO:神经机械泵的数学建模和实验
  • 批准号:
    1151478
  • 财政年份:
    2012
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
CAREER: Developing Mathematical Tools for Modeling Complex Materials Systems
职业:开发用于复杂材料系统建模的数学工具
  • 批准号:
    1056821
  • 财政年份:
    2011
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了