CAREER: Mathematical Modeling from Data to Insights and Beyond

职业:从数据到见解及其他的数学建模

基本信息

  • 批准号:
    2414705
  • 负责人:
  • 金额:
    $ 40.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project will develop both analytical and computational tools for data-driven applications. In particular, analytical tools will hold great promise to provide theoretical guidance on how to acquire data more efficiently than current practices. To retrieve useful information from data, numerical methods will be investigated with emphasis on guaranteed convergence and algorithmic acceleration. Thanks to close interactions with collaborators in data science and information technology, the investigator will ensure the practicability of the proposed research, leading to a real impact. The investigator will also devote herself to various outreach activities in the field of data science. For example, she will initiate a local network of students, faculty members, and domain experts to develop close ties between mathematics and industry as well as to broaden career opportunities for mathematics students. This initiative will have a positive impact on the entire mathematical sciences community. In addition, she will advocate for the integration of mathematical modeling into K-16 education by collaborating with The University of Texas at Dallas Diversity Scholarship Program to reach out to mathematics/sciences teachers.This project addresses important issues in extracting insights from data and training the next generation in the "big data" era. The research focuses on signal/image recovery from a limited number of measurements, in which "limited" refers to the fact that the amount of data that can be taken or transmitted is limited by technical or economic constraints. When data is insufficient, one often requires additional information from the application domain to build a mathematical model, followed by numerical methods. Questions to be explored in this project include: (1) how difficult is the process of extracting insights from data? (2) how should reasonable assumptions be taken into account to build a mathematical model? (3) how should an efficient algorithm be designed to find a model solution? More importantly, a feedback loop from insights to data will be introduced, i.e., (4) how to improve upon data acquisition so that information becomes easier to retrieve? As these questions mimic the standard procedure in mathematical modeling, the proposed research provides a plethora of illustrative examples to enrich the education of mathematical modeling. In fact, one of this CAREER award's educational objectives is to advocate the integration of mathematical modeling into K-16 education so that students will develop problem-solving skills in early ages. In addition, the proposed research requires close interactions with domain experts in business, industry, and government (BIG), where real-world problems come from. This requirement helps to fulfill another educational objective, that is, to promote BIG employment by providing adequate training for students in successful approaches to BIG problems together with BIG workforce skills.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为数据驱动的应用开发分析和计算工具。特别是,分析工具将有很大的希望提供理论指导,说明如何比目前的做法更有效地获取数据。为了从数据中检索有用的信息,将研究数值方法,重点是保证收敛和算法加速。由于与数据科学和信息技术合作者的密切互动,研究人员将确保拟议研究的实用性,从而产生真实的影响。调查员还将致力于数据科学领域的各种外联活动。例如,她将发起一个学生,教师和领域专家的本地网络,以发展数学和行业之间的密切联系,以及扩大数学学生的就业机会。这一举措将对整个数学科学界产生积极影响。此外,她还将通过与德克萨斯大学达拉斯分校多元化奖学金计划合作,倡导将数学建模融入K-16教育,以接触数学/科学教师。该项目解决了在“大数据”时代从数据中提取见解和培养下一代的重要问题。该研究的重点是从有限数量的测量中恢复信号/图像,其中“有限”是指可以获取或传输的数据量受到技术或经济限制的事实。当数据不足时,通常需要来自应用领域的额外信息来构建数学模型,然后是数值方法。本项目要探讨的问题包括:(1)从数据中提取见解的过程有多困难?(2)在建立数学模型时,应如何考虑合理的假设?(3)如何设计有效的算法来找到模型解?更重要的是,将引入从见解到数据的反馈回路,即,(4)如何改进数据采集,使信息更容易检索?由于这些问题模拟了数学建模的标准程序,因此本研究提供了大量的说明性例子,以丰富数学建模的教育。事实上,这个CAREER奖的教育目标之一是倡导将数学建模融入K-16教育,使学生在早期培养解决问题的能力。此外,拟议的研究需要与商业,工业和政府(BIG)领域专家的密切互动,这些领域是现实世界问题的来源。这一要求有助于实现另一个教育目标,即通过为学生提供成功解决大问题的方法以及大劳动力技能的充分培训,促进大就业。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yifei Lou其他文献

Combining Dynamic Mode Decomposition and Difference-in-Differences in an Analysis of At-Risk Youth
结合动态模式分解和双重差分法分析高危青少年
Tensor Robust Principal Component Analysis via the Tensor Nuclear Over Frobenius Norm
  • DOI:
    10.1007/s10915-025-02944-8
  • 发表时间:
    2025-05-29
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Huiwen Zheng;Yifei Lou;Guoliang Tian;Chao Wang
  • 通讯作者:
    Chao Wang
A Linear Systems Approach to Imaging Through Turbulence
  • DOI:
    10.1007/s10851-012-0410-7
  • 发表时间:
    2013-07-10
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Mario Micheli;Yifei Lou;Stefano Soatto;Andrea L. Bertozzi
  • 通讯作者:
    Andrea L. Bertozzi
An image sharpening operator combined with framelet for image deblurring
结合框架的图像锐化算子用于图像去模糊
  • DOI:
    10.1088/1361-6420/ab6df0
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jingjing Liu;Yifei Lou;Guoxi Ni;Tieyong Zeng
  • 通讯作者:
    Tieyong Zeng
Truncated l1-2 Models for Sparse Recovery and Rank Minimization
用于稀疏恢复和秩最小化的截断 l1-2 模型
  • DOI:
    10.1137/16m1098929
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Tian-Hui Ma;Yifei Lou;Ting-Zhu Huang
  • 通讯作者:
    Ting-Zhu Huang

Yifei Lou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yifei Lou', 18)}}的其他基金

CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    1846690
  • 财政年份:
    2019
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
Recent Developments on Mathematical/Statistical Approaches in Data Science
数据科学中数学/统计方法的最新发展
  • 批准号:
    1821870
  • 财政年份:
    2019
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Standard Grant
A Non-Convex Approach for Signal and Image Processing
信号和图像处理的非凸方法
  • 批准号:
    1522786
  • 财政年份:
    2015
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting
职业:通过数学模型确定新的凝血调节机制
  • 批准号:
    2341362
  • 财政年份:
    2023
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    1846690
  • 财政年份:
    2019
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling to Identify New Regulatory Mechanisms of Blood Clotting
职业:通过数学模型确定新的凝血调节机制
  • 批准号:
    1848221
  • 财政年份:
    2019
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling, Physical Experiments, and Biological Data for Understanding Flow Interactions in Collective Locomotion
职业:通过数学建模、物理实验和生物数据来理解集体运动中的流相互作用
  • 批准号:
    1847955
  • 财政年份:
    2019
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling and Computational Tools for in vivo Astrocyte Activity
职业:体内星形胶质细胞活性的数学建模和计算工具
  • 批准号:
    1750931
  • 财政年份:
    2018
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical modeling of angiogenesis signaling and crosstalk in tumor cells
职业:肿瘤细胞中血管生成信号传导和串扰的数学模型
  • 批准号:
    1552065
  • 财政年份:
    2016
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Standard Grant
CAREER: Mathematical Modeling and Computational Studies of Human Seizure Initiation and Spread
职业:人类癫痫发作和传播的数学建模和计算研究
  • 批准号:
    1451384
  • 财政年份:
    2015
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: MPS-BIO: Mathematical Modeling and Experiments of Neuromechanical Pumping
职业:MPS-BIO:神经机械泵的数学建模和实验
  • 批准号:
    1151478
  • 财政年份:
    2012
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
CAREER: Developing Mathematical Tools for Modeling Complex Materials Systems
职业:开发用于复杂材料系统建模的数学工具
  • 批准号:
    1056821
  • 财政年份:
    2011
  • 资助金额:
    $ 40.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了