Multi-Scale Dynamics of Gravity Waves MS-GWaves (Coordination proposal)

重力波的多尺度动力学 MS-GWaves(协调提案)

基本信息

项目摘要

Confidence in climate prediction can only be gained if the present climate is modeled correctly for the correct reasons. Currently, there is a debate on dynamical features such as the predicted enhancement of the Brewer-Dobson circulation, the dynamical downward coupling of the stratosphere on the troposphere, and ozone super-recovery. A particularly large source of uncertainty in this context are internal gravity waves (GWs), which cannot be resolved by current chemistry-climate models and are represented by largely oversimplified parameterizations instead. The research unit (RU) will formulate explicit models of GW excitation, propagation, and dissipation in a physically and mathematically consistent way. These will be tested via process-resolving numerical modeling and measurements. Special attention will be given to multi-scale interactions of gravity waves with turbulence, with the balanced flow, and of unresolved small-scale GWs with large-scale, resolved GWs. Models to be developed will lead to a unified parameterization of GWs, from their sources to their dissipation. Both the GW parameterization and global GW permitting and local GW resolving modeling will be used to quantify and mitigate the uncertainties in the understanding of GW impacts on the atmospheric circulation, large-scale dynamical processes in the atmosphere, and climate change. The effort will be based on a close interdisciplinary interaction of mathematics, theory, high-resolution numerical modeling, and measurements of both the wave processes themselves and their effects on the global scale. This combination of methods is employed since only measurements hold the direct link to reality, only theory allows to understand, and since only high-resolution modeling can provide a detailed diagnosis. Such a comprehensive program is far beyond the possibility of a single research institute or some bilateral cooperation but requires a RU with various institutes joining their experimental, computational, and theoretical capabilities. The long-term gains from the RU are to be:- An enhanced and deepened overview of the spatial, temporal and spectral distribution of GWs in the atmosphere.- A significantly improved understanding of the processes causing and controlling the corresponding GW dynamics.- Based on this an increase in the robustness and completeness of the parameterization of GWs as subgrid-scale phenomenon, addressing source processes, GW propagation, GW mean-flow interaction, and GW dissipation.- Hence a more reliable performance of GW parameterizations under anomalous conditions, e.g. climate change.
只有出于正确的原因,将当前气候正确建模时,才能获得对气候预测的信心。当前,关于动力学特征的争论,例如酿酒厂循环的预测增强,对流层上平流层的动态向下耦合以及臭氧超级恢复。在这种情况下,一个特别大的不确定性来源是内部重力波(GWS),无法通过当前的化学气候模型来解决,而不是在很大程度上过度简化的参数化表示。研究单位(RU)将以物理和数学一致的方式制定GW激发,传播和耗散的明确模型。这些将通过流程解决的数值建模和测量进行测试。将特别关注重力波的多尺度相互作用,具有湍流,平衡流量,以及未解决的小规模GWS,具有大规模的,已解析的GWS。要开发的模型将导致GWS的统一参数化,从其来源到耗散。 GW参数化和全局GW允许和本地GW解析模型均可用于量化和减轻GW对大气循环的影响,大气中的大规模动力学过程以及气候变化的影响。这项工作将基于数学,理论,高分辨率数值建模的紧密跨学科相互作用以及对波过程本身的测量以及它们对全球尺度的影响。这种方法的组合被采用了,因为仅测量值才能与现实的直接联系,只有理论才能理解,并且由于只有高分辨率建模才能提供详细的诊断。这样的全面计划远远超出了单个研究所或某些双边合作的可能性,但是需要一个RU,其中各种机构都加入了他们的实验,计算和理论能力。 The long-term gains from the RU are to be:- An enhanced and deepened overview of the spatial, temporal and spectral distribution of GWs in the atmosphere.- A significantly improved understanding of the processes causing and controlling the corresponding GW dynamics.- Based on this an increase in the robustness and completeness of the parameterization of GWs as subgrid-scale phenomenon, addressing source processes, GW propagation, GW平均流相互作用和GW耗散。因此,在异常条件下,GW参数化的性能更可靠,例如气候变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ulrich Achatz其他文献

Professor Dr. Ulrich Achatz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Ulrich Achatz', 18)}}的其他基金

Spontaneous Imbalance (SI)
自发不平衡 (SI)
  • 批准号:
    258697604
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
Fluctuation-Dissipation, Stochasticity, and Climate-Dependent Subgrid-Scale Parameterizations for Efficient Climate Models
高效气候模型的波动耗散、随机性和气候相关的次网格尺度参数化
  • 批准号:
    254867285
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spatio-Temporal Gravity-Wave-Source Variability (SV)
时空重力波源变异性 (SV)
  • 批准号:
    258659751
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
3D Multi-Scale Dynamics of Gravity-Wave Propagation (3DMSD)
重力波传播的 3D 多尺度动力学 (3DMSD)
  • 批准号:
    258699891
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
Gravity-waves impact on ice clouds in the tropopause region (GW-ICE)
重力波对对流层顶区域冰云的影响(GW-ICE)
  • 批准号:
    258696869
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
The turbulent interaction among scale-separated gravity waves and between gravity waves and synoptic-scale flow
尺度分离重力波之间以及重力波与天气尺度流之间的湍流相互作用
  • 批准号:
    137502438
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Solar contribution to the variability of middle atmosphere solar tides in their interaction with zonal-mean-flow variations, planetary waves and gravity waves
太阳潮汐与纬向平均流量变化、行星波和重力波相互作用对中层大气太阳潮汐变化的贡献
  • 批准号:
    5453266
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Empirische lineare Modellierung der Gezeiten in der mittleren Atmosphäre
中层潮汐的经验线性模型
  • 批准号:
    5160432
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

规模养殖场内动物疫病净化动力学研究
  • 批准号:
    12371493
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
大规模结构动力学拓扑优化的动态多保真缩减理论与方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
大规模结构动力学拓扑优化的动态多保真缩减理论与方法
  • 批准号:
    12272302
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
面向大规模二维材料体系的千万核可扩展分子动力学模拟算法研究
  • 批准号:
    62202119
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
利用大规模反应分子动力学揭示热解焦炭结构的时空演化规律
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349873
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了