CAREER: From Connectome to Behavior: Computational Models of Multifunctional Neural Circuits in C. elegans

职业:从连接组到行为:线虫多功能神经回路的计算模型

基本信息

  • 批准号:
    2345446
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

How an animal flexibly coordinates multiple behaviors as a cohesive unit is one of the central problems of neuroscience; multifunctionality has also been recognized as one of the fundamental challenges in the development of a general artificial intelligence. Although the ability of neural circuits to flexibly reconfigure is widespread among organisms, most studies of the neural basis of behaviors focus on isolated circuits and individual behaviors. Studies that consider multifunctional circuitry tend to focus on the switching between distinct patterns of activity, with little insight into multifunctional sensorimotor integration. With the increasing amount of anatomical, physiological and behavioral data being generated, a computational modeling framework to understand the neural basis of behavior is essential. The goal of this project is to model multiple neural circuits that have been identified in isolation and to integrate them into a single model to better understand how multifunctionality arises in sensory-driven behavioral circuits. This project is an important step toward the long-term goal of developing a behaviorally-functional brain-body-environment model of a living organism at the level of individual neurons. The cross-disciplinary methodologies developed from this project will serve as a springboard for understanding multifunctional circuits in living organisms as well as for generating artificial systems capable of robustly and efficiently performing multiple functions. The project focuses specifically on modeling and analyzing the circuits responsible for the wide range of spatial orientation behaviors in the nematode Caenorhabditis elegans. This model organism is a uniquely qualified target for integrated computational modeling of a complete animal because of the breadth of information known about its genetics, development, anatomy, and behavior. Despite this substantial knowledge, information about the electrophysiological properties of its nervous system is less complete. The project aims to constrain the model by what is known from the anatomy and physiology of the organism with reasoned simplifications about its body and environment. Then, stochastic optimization will be used to fill in electrophysiological unknowns such that the model produces behavior that matches what has been observed, including the effect of neural manipulations on behavior. The result of optimization will not be a unique model, but rather an ensemble of models that are consistent with current knowledge of the system. Each of these possibilities represents a testable hypothesis for C. elegans. The next step in the project will be to analyze the structure of this ensemble to formulate the key experiments that can distinguish between the various classes of possibilities in the worm. The results of such experiments can then be used as additional constraints for subsequent optimizations in an iterative cycle of model refinement. Besides the generation of experimentally-testable predictions that are specific to C. elegans, through the analysis of the ensemble of models, the project aims to discover general principles for how multifunctional circuits operate in living organisms more broadly.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动物如何灵活地协调多种行为作为一个有凝聚力的单位是神经科学的核心问题之一;多功能性也被认为是通用人工智能发展的基本挑战之一。尽管神经回路灵活重组的能力在生物体中广泛存在,但大多数关于行为的神经基础的研究都集中在孤立回路和个体行为上。考虑多功能电路的研究倾向于关注不同活动模式之间的切换,而对多功能感觉运动整合的了解很少。随着解剖学、生理学和行为学数据的不断增加,一个计算建模框架来理解行为的神经基础是必不可少的。这个项目的目标是对已经被孤立识别的多个神经回路进行建模,并将它们整合到一个单一的模型中,以更好地理解多功能性是如何在感觉驱动的行为回路中产生的。该项目是朝着在单个神经元水平上开发生物体行为功能脑-体-环境模型的长期目标迈出的重要一步。从该项目中开发的跨学科方法将作为理解活生物体中多功能电路的跳板,以及生成能够稳健有效地执行多种功能的人工系统。该项目特别侧重于建模和分析负责秀丽隐杆线虫广泛空间定向行为的电路。由于对其遗传、发育、解剖和行为的广泛了解,这种模式生物是对完整动物进行综合计算建模的唯一合格目标。尽管有大量的知识,但关于其神经系统的电生理特性的信息还不太完整。该项目旨在通过对生物体的解剖学和生理学进行合理的简化来约束该模型。然后,随机优化将用于填补电生理的未知,使模型产生与观察到的行为相匹配的行为,包括神经操纵对行为的影响。优化的结果将不是一个独特的模型,而是与系统当前知识一致的模型的集合。每一种可能性都代表了秀丽隐杆线虫的可检验假设。该项目的下一步将是分析这个集合的结构,以制定能够区分蠕虫中各种可能性的关键实验。这样的实验结果可以用作模型细化迭代周期中后续优化的附加约束。除了生成针对秀丽隐杆线虫的可实验测试的预测外,通过对模型集合的分析,该项目旨在发现更广泛的生物体中多功能电路如何运作的一般原理。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eduardo Izquierdo其他文献

Autonomy: A Review and a Reappraisal
自治:回顾与重新评价
  • DOI:
    10.1007/978-3-540-74913-4_46
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Froese;N. Virgo;Eduardo Izquierdo
  • 通讯作者:
    Eduardo Izquierdo
Expresión diferencial de los genes SERCA en células de cáncer de mama
妈妈癌症细胞中 SERCA 基因表达差异
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ángel Zarain;Eduardo Izquierdo;Andrés Hernández;Gabriela Rodríguez;Dalia Lozano
  • 通讯作者:
    Dalia Lozano
Ru(II)-Cyanine Complexes as Promising Photodynamic Photosensitizers for the Treatment of Hypoxic Tumours with Highly Penetrating 770 nm Near-Infrared Light.
Ru(II)-花青配合物作为有前途的光动力光敏剂,用于用高穿透性 770 nm 近红外光治疗缺氧肿瘤。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Albert Gandioso;Eduardo Izquierdo;Pierre Mesdom;P. Arnoux;Nurikamal Demeubayeva;P. Burckel;B. Saubaméa;M. Bosch;C. Frochot;V. Marchán;G. Gasser
  • 通讯作者:
    G. Gasser
A mechanism-based sphingosine-1-phosphate lyase inhibitor.
一种基于机制的 1-磷酸鞘氨醇裂解酶抑制剂。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    G. Pons;D. Riba;M. Casasampere;Eduardo Izquierdo;J. Abad;G. Fabriàs;P. G. Rodríguez Ortega;J. J. López;M. Montejo;J. Casas;A. Delgado
  • 通讯作者:
    A. Delgado
Experimental Study of Hydrocarbons Synthesis from Syngas by a Tip–Tip Electrical Discharge at Very High Pressure
  • DOI:
    10.1007/s11090-011-9316-1
  • 发表时间:
    2011-09-04
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Vandad Rohani;Samuel Iwarere;Frederic Fabry;Delphine Mourard;Eduardo Izquierdo;Deresh Ramjugernath;Laurent Fulcheri
  • 通讯作者:
    Laurent Fulcheri

Eduardo Izquierdo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eduardo Izquierdo', 18)}}的其他基金

CAREER: From Connectome to Behavior: Computational Models of Multifunctional Neural Circuits in C. elegans
职业:从连接组到行为:线虫多功能神经回路的计算模型
  • 批准号:
    1845322
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似海外基金

Charting the human brain connectome over the lifespan
绘制人类大脑连接组在整个生命周期的图表
  • 批准号:
    FT220100091
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    ARC Future Fellowships
Visualization of the epileptic connectome of deep brain structures and research on the development of stereotactic deep epileptic focus disconnection
脑深部结构癫痫连接组可视化及立体定向深部癫痫病灶断开技术的发展研究
  • 批准号:
    23K15663
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reading memories from the connectome
从连接组中读取记忆
  • 批准号:
    23K18165
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Stroke Connectome MRI biomarkers for VCID risk assessment
用于 VCID 风险评估的中风连接组 MRI 生物标志物
  • 批准号:
    10887028
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Multidimensional brain connectome features of depression and anxiety
抑郁和焦虑的多维脑连接组特征
  • 批准号:
    10571512
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Septhohippocamal connectome dysfunction in Down syndrome associated with Alzheimer’s disease pathophysiology
与阿尔茨海默病病理生理学相关的唐氏综合症中的隔海马连接体功能障碍
  • 批准号:
    10595384
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
CAREER: Efficient brain connectome dynamics enabling transitions across cognitive domains
职业:高效的大脑连接组动力学实现跨认知领域的转变
  • 批准号:
    2237285
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Promoting Collaborative Research on Human Connectome Analysis for Substance Use Disorders
促进药物使用障碍人类连接组分析的合作研究
  • 批准号:
    10738580
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
The Primate Corticospinal Connectome and Transcriptome - Supplement
灵长类动物皮质脊髓连接组和转录组 - 补充
  • 批准号:
    10876189
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Functional Connectome of Brain White Matter
脑白质功能连接组
  • 批准号:
    10735976
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了